Citation: Qiuhong Wei,  Huiliang Li,  Ranxiao Tang,  Qiuhua Wu,  Tao Meng,  Xiaocui Chen,  Shuaihua Zhang. 无机化学立足教材、追踪前沿——“三步法”科研反哺教学的探索与实践[J]. University Chemistry, ;2022, 37(11): 220509. doi: 10.3866/PKU.DXHX202205097 shu

无机化学立足教材、追踪前沿——“三步法”科研反哺教学的探索与实践

  • Received Date: 30 May 2022

  • 针对科研反哺教学中存在的问题,提出立足教材、追踪前沿的“三步法”科研反哺教学方法。以“沉淀的生成”一节内容为例介绍这种方法的应用,从沉淀生成的理论知识(教材),到沉淀法在纳米材料合成中的应用(实践),再到金属有机骨架材料(MOF)合成过程中的成核细节(科学前沿)。这种科研反哺教学方法的实施取得了较好的教学效果,学生的科研及创新能力得到了显著提高。

    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

      Adabi, H.; Shakouri, A.; Ul Hassan, N.; Varcoe, J. R.; Zulevi, B.; Serov, A.; Regalbuto, J. R.; Mustain, W. E. Nat. Energy 2021, 6 (8), 834.

    9. [9]

      Mefford, J. T.; Akbashev, A. R.; Kang, M. K.; Bentley, C. L.; Gent, W. E.; Deng, H. T. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A.;et al. Nature 2021, 593 (7857), 67.

    10. [10]

      Rafalskyi, D.; Martinez, J. M.; Habl, L.; Rossi, E. Z.; Proynov, P.; Bore, A.; Baret, T.; Poyet, A.; Lafleur, T.; Dudin, S.; et al. Nature 2021,599 (7885), 411.

    11. [11]

      Herr, P.; Kerzig, C.; Larsen, C. B.; Haussinger, D.; Wenger, O. S. Nat. Chem. 2021, 13 (10), 956.

    12. [12]

      Smit, W. J.; Bakker, H. J. Angew. Chem. Int. Ed. 2017, 56 (49), 15540.

    13. [13]

      Loh, Z. H.; Doumy, G.; Arnold, C.; Kjellsson, L.; Southworth, S. H.; Al Haddad, A.; Kumagai, Y.; Tu, M. F.; Ho, P. J.; March, A. M.; et al. Science 2020, 367 (6474), 179.

    14. [14]

      Liu, X. W.; Chee, S. W.; Raj, S.; Sawczyk, M.; Kral, P.; Mirsaidov, U. P. Natl. Acad. Sci. USA 2021, 118 (10), e2008880118.

    15. [15]

    16. [16]

      Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423 (6941), 705.

    17. [17]

    18. [18]

    19. [19]

    20. [20]

      Li, G.; Meng, X.; Wang, J.; Wang, Q.; Zhou, J.; Wang, C.; Wu, Q.; Wang, Z. Food Chem. 2020, 309, 125618.

    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

      Adabi, H.; Shakouri, A.; Ul Hassan, N.; Varcoe, J. R.; Zulevi, B.; Serov, A.; Regalbuto, J. R.; Mustain, W. E. Nat. Energy 2021, 6 (8), 834.

    9. [9]

      Mefford, J. T.; Akbashev, A. R.; Kang, M. K.; Bentley, C. L.; Gent, W. E.; Deng, H. T. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A.;et al. Nature 2021, 593 (7857), 67.

    10. [10]

      Rafalskyi, D.; Martinez, J. M.; Habl, L.; Rossi, E. Z.; Proynov, P.; Bore, A.; Baret, T.; Poyet, A.; Lafleur, T.; Dudin, S.; et al. Nature 2021,599 (7885), 411.

    11. [11]

      Herr, P.; Kerzig, C.; Larsen, C. B.; Haussinger, D.; Wenger, O. S. Nat. Chem. 2021, 13 (10), 956.

    12. [12]

      Smit, W. J.; Bakker, H. J. Angew. Chem. Int. Ed. 2017, 56 (49), 15540.

    13. [13]

      Loh, Z. H.; Doumy, G.; Arnold, C.; Kjellsson, L.; Southworth, S. H.; Al Haddad, A.; Kumagai, Y.; Tu, M. F.; Ho, P. J.; March, A. M.; et al. Science 2020, 367 (6474), 179.

    14. [14]

      Liu, X. W.; Chee, S. W.; Raj, S.; Sawczyk, M.; Kral, P.; Mirsaidov, U. P. Natl. Acad. Sci. USA 2021, 118 (10), e2008880118.

    15. [15]

    16. [16]

      Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423 (6941), 705.

    17. [17]

    18. [18]

    19. [19]

    20. [20]

      Li, G.; Meng, X.; Wang, J.; Wang, Q.; Zhou, J.; Wang, C.; Wu, Q.; Wang, Z. Food Chem. 2020, 309, 125618.

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(7)
  • Abstract views(460)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return