Citation: Ya'ni Wang,  Xue-Peng Zhang. Investigations on Allyl Cation Rotational Isomerism: A Computational Experiment Design[J]. University Chemistry, ;2023, 38(2): 197-206. doi: 10.3866/PKU.DXHX202205027 shu

Investigations on Allyl Cation Rotational Isomerism: A Computational Experiment Design

  • In this study, a computational chemistry exploration experiment for senior undergraduate or beginning graduate students is designed. The rotational isomerization reaction of an allyl cation is investigated using density functional theory (DFT) calculations. The theoretical experiment involves molecular geometry optimization, transition state location, and establishment of intrinsic reaction coordinates (IRCs). This design can help students understand the basic concepts and operations of computational chemistry. Furthermore, the concepts of molecular microstructures and the notion of “old bonds are about to break and new bonds are about to form” in the transition state theory are discussed. This experiment will also aid the understanding of the differences between reaction thermodynamics and kinetics through the construction of potential energy surfaces. Further investigations of charge population analysis and frontier orbital analysis will aid the understanding of electronic structures of molecules as well as the concept of reaction reactive sites.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

      Epstein, S. T. J. Chem. Phys. 1966, 44, 836.

    14. [14]

      Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.

    15. [15]

      Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.

    16. [16]

      Bartlett, R. J.; Purvis, G. D. Int. J. Quantum Inf. 1978, 14, 561.

    17. [17]

      Pople, J. A.; Seeger, R.; Krishnan, R. Int. J. Quantum Inf. 1977, 12, 149.

    18. [18]

      Krishnan, R.; Schlegel, H. B.; Pople, J. A. J. Chem. Phys. 1980, 72, 4654.

    19. [19]

      Raghavachari, K.; Pople, J. A. Int. J. Quantum Inf. 1981, 20, 1067.

    20. [20]

      Stewart, J. J. P. J. Mol. Model. 2007, 13, 1173.

    21. [21]

      Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.

    22. [22]

      Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.

    23. [23]

      Calais, J.-L. Int. J. Quantum Inf. 1993, 47, 101.

    24. [24]

      Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. C 1994, 98, 11623.

    25. [25]

      Neese, F. WIREs Comput. Mol. Sci. 2018, 8, e1327.

    26. [26]

      Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; et al. J. Comput. Chem. 1993, 14, 1347.

    27. [27]

      Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; et al. WIREs Comput. Mol. Sci. 2014, 4, 269.

    28. [28]

      Nayak, N. Y.; Nayak, S.; Nadaf, Y. F.; Shetty, S. N.; Gaonkar L. S. Lett. Org. Chem. 2020, 17, 491.

    29. [29]

      Tracy, J. S.; Kalnmals, C. A.; Toste F. D. Isr. J. Chem. 2021, 61, 340.

    30. [30]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.:Wallingford, CT, USA, 2010.

    31. [31]

    32. [32]

      Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.

    33. [33]

      Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841.

    34. [34]

      Mulliken, R. S. J. Chem. Phys. 1955, 23, 2338.

    35. [35]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.

    36. [36]

      Singh, U. C.; Kollman, P. A. J. Comput. Chem. 1984, 5, 129.

    37. [37]

  • 加载中
    1. [1]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    7. [7]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    8. [8]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    9. [9]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    15. [15]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    16. [16]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    20. [20]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

Metrics
  • PDF Downloads(0)
  • Abstract views(930)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return