Citation:
Qing Liu, Haishui Wang, Chao Chen. Physical Meanings and Applicable Conditions of pH Approximate Formulas of NaHA Solution[J]. University Chemistry,
;2023, 38(2): 260-265.
doi:
10.3866/PKU.DXHX202204021
-
Approximate calculation of the pH of a NaHA solution plays an important role in analytical chemistry. However, the physical meanings and applicable conditions of the pH approximate formulas are not demonstrated in detail in current textbooks. In this paper, the applicable conditions and physical significance of various approximate formulas are described. The approximate formulas with incorrect physical meanings and inappropriate applicable conditions should be modified. NaHA solutions can be categorized as acidic (Ka1Ka2 > Kw) or alkaline (Ka1Ka2 <Kw). When cKa2 ≥ 20Kw, by assuming that the production of OH- from water and from HA- is negligible, the approximate formula of an acidic NaHA solution is obtained. When c ≥ 20Ka1 (namely cKb2 ≥ 20Kw), the approximate formula of an alkaline NaHA solution is obtained by ignoring the production of H+ from water and HA-. The formula pH = (pKa1 + pKa2)/2 is suitable for both acidic and alkaline NaHA solutions, but their applicable conditions are quite different. This paper carefully discussed the pH calculation of NaHA solutions. The computation results demonstrated that some formulas should be disabled and the related wrong statements in textbooks be corrected.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[1]
-
-
-
[1]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[2]
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
-
[3]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[4]
Suqing Shi , Anyang Li , Yuan He , Jianli Li , Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009
-
[5]
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
-
[6]
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
-
[7]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[8]
Lisen Sun , Yongmei Hao , Zhen Huang , Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063
-
[9]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[10]
Naiying Fan , Chuanli Qin , Guo Zhang , Bin Wang , Yan Wang , Bing Zheng , Yichun Qu , Zhiyao Sun , Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061
-
[11]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[12]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[13]
Tongqi Ye , Qi Wang , Yuewen Ye , Yanqing Wang , Hongyang Zhou , Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116
-
[14]
Hongmei Zhao , Ziqiang Lu , Song Li , Xingyu Li , Chengting Zi , Xingli Fan , Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006
-
[15]
Youjun Fan , Dandan Cai , Wei Chen , Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123
-
[16]
Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080
-
[17]
Jianmin Hao , Ruifeng Wu , Ying Wang , Yijia Bai , Xuechuan Gao , Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103
-
[18]
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021
-
[19]
Ruming Yuan , Laiying Zhang , Xiaoming Xu , Pingping Wu , Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030
-
[20]
Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1006)
- HTML views(122)