Citation: Xinxin Peng,  Lizhi Xu,  Jiayi Zhang,  Yanbo Jing,  Songlin Tian,  Yinghan Wu,  Runyu Cao,  JunLong Zhang. 镓元素在医疗卫生领域的应用:以抗癌与抗菌为例[J]. University Chemistry, ;2022, 37(3): 220305. doi: 10.3866/PKU.DXHX202203050 shu

镓元素在医疗卫生领域的应用:以抗癌与抗菌为例

  • Received Date: 19 March 2022

  • 镓(Ga)位于元素周期表第四周期第IIIA族,在临床疾病诊断和治疗中有重要应用。在体内,氧化还原惰性的三价镓(Ga(III))通常作为Fe(III)的竞争性抑制剂,破坏病变(肿瘤或感染)部位的铁稳态,从而实现抗肿瘤或抗菌的作用。在癌症诊疗方面,Ga(III)可以通过与转铁蛋白结合或独立运输的方式进入细胞:其放射性同位素(67Ga或68Ga)在癌组织中富集,实现肿瘤的放射影像学诊断;而非放射性Ga则通过抑制核糖核苷酸还原酶(RR)的正常功能、引起线粒体氧化应激等途径杀灭癌细胞。在抗菌方面,Ga与Fe在生化反应中形成竞争关系,从而破坏细菌生物被膜的结构和功能,实现抗菌作用。本文从化学原理出发,介绍了Ga在癌症的诊疗和抗菌领域的应用,并对Ga基药物的发展进行了展望。
  • 加载中
    1. [1]

      Jakupec, M. A.; Galanski, M.; Arion, V. B.; Hartinger, C. G.; Keppler, B. K. Dalton Trans. 2008, No. 2, 183.

    2. [2]

      Ning, Y. Y.; Zhu, M. L.; Zhang, J. L. Coord. Chem. Rev. 2019, 399, 213028.

    3. [3]

    4. [4]

      Zhang, L.; Li, J.; Liu, K. Sci. China Technol. Sci.2018, 61, 1329.

    5. [5]

      Chen, X.; Wu, Y.; Dong, H.; Zhang, C. Y.; Zhang, Y. Curr. Mol. Med. 2013, 13 (10), 1603.

    6. [6]

      Shen, Z. X.; Chen, G. Q.; Ni, J. H.; Li, X. S.; Xiong, S. M.; Qiu, Q. Y.; Zhu, J.; Tang, W.; Sun, G. L.; Yang, K. Q.; et al. Blood 1997, 89 (9), 3354.

    7. [7]

      Dittes, U.; Vogel, E.; Keppler, B. K. Coord. Chem. Rev. 1997, 163, 345.

    8. [8]

      Oh, G. S.; Kim, H. J.; Shen, A. H.; Lee, S. B.; Khadka, D.; Pandit, A.; So, H. S. Electrolytes Blood Pressure 2014, 12 (2), 55.

    9. [9]

      Callejo, A.; Sedó-Cabezón, L.; Juan, I. D.; Llorens, J. Toxics 2015, 3 (3), 268.

    10. [10]

      Kanat, O.; Ertas, H.; Caner, B. World J. Clin. Oncol. 2017, 8 (4), 329.

    11. [11]

      Shahid, F.; Farooqui, Z.; Khan, F. Eur. J. Pharmacol. 2018, 827, 49.

    12. [12]

      Peng, X. X.; Gao, S.; Zhang, J. L. Eur. J. Inorg. Chem. 2022, 2022 (6), e202100953.

    13. [13]

      Truong, B.; Jolles, P. R.; Mullaney, J. M. J. Nucl. Med. 1997, 38 (11), 1770.

    14. [14]

      Al-Nahhas, A.; Win, Z.; Szyszko, T.; Singh, A.; Nanni, C.; Fanti, S.; Rubello, D. Anticancer Res. 2007, 27 (6B), 4087.

    15. [15]

      Bilezikian, J. P. N. Engl. J. Med. 1992, 326 (11), 1196.

    16. [16]

      Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press:Boca Raton, FL, USA, 2017.

    17. [17]

    18. [18]

    19. [19]

      Giesel, F. L.; Kratochwil, C.; Lindner, T.; Marschalek, M. M.; Loktev, A.; Lehnert, W.; Debus, J.; Jäger, D.; Flechsig, P.; Altmann, A.; et al. J. Nucl. Med. 2019, 60 (3), 386.

    20. [20]

      Duan, H.; Baratto, L.; Hatami, N.; Liang, T.; Aparici, C. M.; Davidzon, G. A.; Iagaru, A. Transl. Oncol. 2022, 15 (1), 101293.

    21. [21]

      Lococo, F.; Rapicetta, C.; Mengoli, M. C.; Filice, A.; Paci, M.; Stefano, T. D.; Coruzzi, C.; Versari, A. Interact Cardiovasc. Thorac. Surg. 2019,28 (6), 957.

    22. [22]

      Levaditi, C.; Lepine, P. C. R. Hebd. Seances Acad. Sci. 1931, 193, 404.

    23. [23]

      Chitambar, C. R. Met. Ions Life Sci. 2018, 18, 281.

    24. [24]

      Gomme, P. T.; McCann, K. B.; Bertolini, J. Drug Discov. Today 2005, 10 (4), 267.

    25. [25]

      Paterson, S.; Armstrong, N. J.; Iacopetta, B. J.; McArdle, H. J.; Morgan, E. H. J. Cell. Physiol. 1984, 120 (2), 225.

    26. [26]

      Lawless, D.; Brown, D. H.; Hubner, K. F.; Colyer, S. P.; Carlton, J. E.; Hayes, R. L. Cancer Res. 1978, 38 (12), 4440.

    27. [27]

      Harris, A. W.; Sephton, R. G. Cancer Res. 1977, 37 (10), 3634.

    28. [28]

      Chan, S. M.; Hoffer, P. B.; Maric, N.; Duray, P. J. Nucl. Med. 1987, 28 (8), 1303.

    29. [29]

      Larrick, J. W.; Cresswell, P. J. Supramol. Struct. 1979, 11 (4), 579.

    30. [30]

      Chitambar, C. R.; Massey, E. J.; Seligman, P. A. J. Clin. Invest. 1983, 72, 1314.

    31. [31]

      Sephton, R. G.; Hodgson, G. S.; Abrew, S. D.; Harris, A. W. J. Nucl. Med. 1978, 19 (8), 930.

    32. [32]

      Logan, K. J.; Ng, P. K.; Turner, C. J.; Schmidt, R. P.; Terner, U. K.; Scott, J. R.; Lentle, B. C.; Noujaim, A. A. Intl. J. Nucl. Med. Biol. 1981, 8 (4), 271.

    33. [33]

      Chitambar, C. R.; Zivkovic, Z. Cancer Res. 1987, 47 (15), 3929.

    34. [34]

      Inman, R. S.; Coughlan, M. M.; Wessling-Resnick, M. Biochemistry 1994, 33 (39), 11850.

    35. [35]

      Kell, D. B. BMC Med. Genomics 2009, 2, 2.

    36. [36]

      Weiner, R. E. Nucl. Med. Biol. 1996, 23 (6), 745.

    37. [37]

      Chitambar, C. R.; Matthaeus, W. G.; Antholine, W. E.; Graff, K.; O'Brien, W. J. Blood 1988, 72 (6), 1930.

    38. [38]

      Narasimhan, J.; Antholine, W. E.; Chitambar, C. R. Biochem. Pharmacol. 1992, 44 (12), 2403.

    39. [39]

      Chitambar, C. R.; Narasimhan, J.; Guy, J.; Sem, D. S.; O'Brien, W. J. Cancer Res. 1991, 51 (22), 6199.

    40. [40]

      Chitambar, C. R.; Wereley, J. P.; Matsuyama, S. Mol. Cancer Ther. 2006, 5 (11), 2834.

    41. [41]

      Pastorino, J. G.; Chen, S. T.; Tafani, M.; Snyder, J. W.; Farber, J. L. J. Biol. Chem. 1998, 273 (13), 7770.

    42. [42]

      Smaili, S. S.; Hsu, Y. T.; Sanders, K. M.; Russell J. T.; Youle, R. J. Cell Death Differ. 2001, 8, 909.

    43. [43]

    44. [44]

      Korshunov, S. S.; Krasnikov, B. F.; Pereverzev, M. O.; Skulachev, V. P. FEBS Lett. 1999, 462 (1-2), 192.

    45. [45]

      Alhajala, H. S.; Markley, J. L.; Kim, J. H.; Al-Gizawiy, M. M.; Schmainda, K. M.; Kuo, J. S.; Chitambar, C. R. Oncotarget 2020, 11 (17), 1531.

    46. [46]

      Behmoaras, J. FEBS J. 2020, 288 (24), 6972.

    47. [47]

      Warrell, R. P., Jr.; Coonley, C. J.; Straus, D. J.; Young, C. W. Cancer 1983, 51 (11), 1982.

    48. [48]

      Arion, V. B.; Jakupec, M. A.; Galanski, M.; Unfried, P.; Keppler, B. K. J. Inorg. Biochem. 2002, 91 (1), 298.

    49. [49]

      Mendes, I. C.; Soares, M. A.; Dos Santos, R. G.; Pinheiro, C.; Beraldo, H. Eur. J. Med. Chem. 2009, 44 (5), 1870.

    50. [50]

      Kowol, C. R.; Berger, R.; Eichinger, R.; Roller, A.; Jakupec, M. A.; Schmidt, P. P.; Arion, V. B.; Keppler, B. K. J. Med. Chem. 2007, 50 (6), 1254.

    51. [51]

      Richardson, D. R.; Tran, E. H.; Ponka, P. Blood 1995, 86 (11), 4295.

    52. [52]

      Richardson, D. R.; Milnes, K. Blood 1997, 89 (8), 3025.

    53. [53]

      Landschulz, W.; Thesleff, I.; Ekblom, P. J. Cell Biol. 1984, 98 (2), 596.

    54. [54]

      Knorr, G. M.; Chitambar, C. R. Anticancer Res. 1998, 18 (3A), 1733.

    55. [55]

      Chitambar, C. R.; Boon, P.; Wereley, J. P. Clin. Cancer Res. 1996, 2 (6), 1009.

    56. [56]

      Yin, H. Y.; Gao J. J.; Chen, X. M.; Ma, B.; Yang, Z. S.; Tang, J.; Wang, B. W.; Chen, T. F.; Wang, C.; Gao, S.; et al. Angew. Chem. Int. Ed. 2020,59 (45), 20147.

    57. [57]

    58. [58]

    59. [59]

      Beebout, C. J.; Eberly, A. R.; Werby, S. H.; Reasoner, S. A.; Brannon, J. R.; De, S.; Fitzgerald, M. J.; Huggins, M. M.; Clayton, D. B.; Cegelski, L.; et al. mBio, 2019, 10 (2), 1.

    60. [60]

    61. [61]

      Kaneko, Y.; Thoendel, M.; Olakanmi, O.; Britigan, B. E.; Singh, P. K. J. Clin. Invest. 2007, 117 (4), 877.

    62. [62]

    63. [63]

      Wang, Y.; Han, B.; Xie, Y.; Wang, H.; Wang, R.; Xia, W.; Li, H.; Sun, H. Chem. Sci. 2019, 10, 6099.

  • 加载中
    1. [1]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    2. [2]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    5. [5]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    9. [9]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    12. [12]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    13. [13]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    14. [14]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    15. [15]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    16. [16]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(12)
  • Abstract views(1086)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return