Citation: Haoran Cai,  Xiayi Yao,  Yuchao Cao,  Zepeng Lu,  Jiang Bian. Applications of Photoelectrochemistry in Organic Synthesis[J]. University Chemistry, ;2023, 38(1): 129-140. doi: 10.3866/PKU.DXHX202202021 shu

Applications of Photoelectrochemistry in Organic Synthesis

  • Corresponding author: Jiang Bian, bj@pku.edu.cn
  • Received Date: 12 February 2022

  • In recent years, photoelectrochemistry has attracted more and more attention as an efficient method of organic synthesis. A combination of the amazing performance of photochemical catalysis and the anti-thermodynamic properties of electrochemical catalysis has greatly simplified several organic syntheses. In this paper, we introduce typical photoelectrochemical reactions, summarize several catalysts widely applied in photoelectrochemistry, and propose a perspective for further applications of photoelectrochemistry.
  • 加载中
    1. [1]

      Nicholson, W. J. Nat. Philos. Chem. Arts. 1800, 4, 179.

    2. [2]

      Jutand, A. Chem. Rev. 2008, 108, 2300.

    3. [3]

      Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.

    4. [4]

      Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.

    5. [5]

      Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.

    6. [6]

      Tang, S.; Liu, Y.; Lei, A. Acc. Chem. Res. 2018, 4, 27.

    7. [7]

      Wiebe, A.; Gieshoff, T.; Mohle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, 57, 5594.

    8. [8]

      Liu, J.; Lu, L.; Wood, D.; Lin, S. ACS Cen. Sci. 2020, 6 (8), 1317.

    9. [9]

      Yu, Y.; Guo, P.; Zhong, J.; Yuan, Y.; Ye, K. Org. Chem. Front. 2020, 7 (1), 131.

    10. [10]

      O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.

    11. [11]

      Lewis, N.; Nocera, D. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.

    12. [12]

      Gray, H. Nat. Chem. 2009, 1, 112.

    13. [13]

      Ardo, S.; Meyer, G. Chem. Soc. Rev. 2009, 38, 115.

    14. [14]

      Mckone, J. R.; Lewis, N. S.; Gray, H. B. Chem. Mater. 2014, 26, 407.

    15. [15]

      Zhang, B.; Sun, L. Chem. Soc. Rev. 2019, 48, 2216.

    16. [16]

      Barber, J.; Tran, P. D. J. R. Soc. Interface. 2013, 10 (81), 20120984.

    17. [17]

      Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. J. Am. Chem. Soc. 2020, 142, 2093.

    18. [18]

      El-Khouly, M. E.; El-Mohsnawy, E.; Fukuzumi, S. J. Photochem. Photobiol. 2017, 31, 36.

    19. [19]

      Moutet, J.; Reverdy, G. Tetrahedron Lett. 1979, 20, 2389.

    20. [20]

      Shukla, S.; Rusling, J. J. Phys. Chem. 1985, 89 (15), 3353.

    21. [21]

      Sauermann, N.; Meyer, T. H.; Qiu, Y. A.; Ackermann, L. ACS Catal. 2018, 8, 7086.

    22. [22]

      Qiu, Y. A.; Scheremetjew, A.; Finger, L. H.; Ackermann, L. Chem. Eur. J. 2020, 26, 3241.

    23. [23]

      Lai, X. L.; Shu, X. M.; Song, J. S.; Xu, H. C. Angew. Chem. Int. Ed. 2020, 59, 10626.

    24. [24]

      Yan, H.; Hou, Z. W.; Xu, H. C. Angew. Chem. Int. Ed. 2019, 58, 4592.

    25. [25]

      Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. Angew. Chem. Int. Ed. 2019, 58, 38.

    26. [26]

      Niu, L.; Jiang, C.; Liang, Y.; Liu, D.; Bu, F.; Shi, R.; Chen, H.; Chowdhury, A. D.; Lei, A. J. Am. Chem. Soc. 2020, 142, 41.

    27. [27]

      Zhang, W.; Carpenter, K. L.; Lin, S. Angew. Chem. Int. Ed. 2019, 59, 409.

    28. [28]

      Scheffold, R.; Orlinski, R. J. Am. Chem. Soc. 1983, 105, 7200.

    29. [29]

      Wolff, M. E. Chem. Rev. 1963, 63, 55.

    30. [30]

      Li, J.; Corey, E. J. Name Reactions in Heterocyclic Chemistry; Wiley: Hoboken, NY, USA, 2005.

    31. [31]

      Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.

    32. [32]

      Wang, F.; Stahl, S. S. Angew. Chem. Int. Ed. 2018, 58, 19.

    33. [33]

      Martinez, C.; Muniz, K. Angew. Chem. Int. Ed. 2015, 54, 8287.

    34. [34]

      Becker, P.; Duhamel, T.; Stein, C. J.; Reiher, M.; Muniz, K. Angew. Chem. Int. Ed. 2017, 56, 8004.

    35. [35]

      Duhamel, T.; Stein, C. J.; Martinez, C.; Reiher, M.; Muniz, K. ACS Catal. 2018, 8, 3918.

    36. [36]

      Stateman, L. M.; Wappes, E. A.; Nakafuku, K. M.; Edwards, K. M.; Nagib, D. A. Chem. Sci. 2019, 10, 2693.

    37. [37]

      Zhang, L.; Liardet, L.; Luo, J. S.; Ren, D.; Gratzel, M.; He, X. Nat. Catal. 2019, 2, 366.

    38. [38]

      Sivula, K.; van de Krol, R. Nat. Mater. 2016, 1, 1.

    39. [39]

      Okada, Y. Chem. Rec. 2021, 21, 2223.

    40. [40]

      Barham, J. P.; König, B. Angew. Chem. Int. Ed. 2020, 59, 11732.

    41. [41]

      Tsudaka, T.; Kotani, H.; Ohkubo, K.; Nakagawa, T.; Tkachenko, N. V.; Lemmetyinen, H.; Fukuzumi, S. Chem. Eur. J. 2017, 23, 1306.

    42. [42]

      Speckmeier, E.; Fischer, T. G.; Zeitler, K. A. J. Am. Chem. Soc. 2018, 140, 15353.

    43. [43]

      Ohkubo, K.; Fujimoto, A.; Fukuzumi, S. J. Am. Chem. Soc. 2013, 135, 5368.

    44. [44]

      Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600.

  • 加载中
    1. [1]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    8. [8]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    16. [16]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    17. [17]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    18. [18]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(28)
  • Abstract views(1076)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return