Citation: Zhongxue Fang,  Qihao Jin,  Haoyu Wen,  Wenting Sun,  Jingtao Dai. The High Efficiency Synthesis of Flavonoid Drug Molecules[J]. University Chemistry, ;2023, 38(1): 233-239. doi: 10.3866/PKU.DXHX202201019 shu

The High Efficiency Synthesis of Flavonoid Drug Molecules

  • Corresponding author: Jingtao Dai, ycjtdai@163.com
  • Received Date: 12 January 2022

  • The extraction of Rutin from Sophora japonica buds is a classic experiment performed in basic organic chemistry for the extraction of flavonoids from plants. The molecular structure of a series of flavonoid drugs extracted from plants, which are derived from 2-phenylchromogenone (also known as flavone) molecules, were analyzed. In the experiment, we found that the extraction yield of flavonoids is low and could not satisfy the current demand for flavonoid drugs. Therefore, we attempted to synthesize flavonoids and their corresponding derivatives using a high efficiency chemical method. Flavonoid synthesis was divided into two steps. First, 2’-hydroxychalcone was synthesized by aldol condensation, followed by the cyclization of iodine-catalyzed molecules to produce flavone. This experiment requires approximately 6 h to complete and can be used as a teaching experiment, as well as a development and open experiment after class. The improved experiment has the advantages of safety, easy operation, good repeatability, and high yield compared with the extraction from plants. In addition, through the improvement of this experiment, the students were guided to adopt a similar method to design and synthesize the flavonoid derivative “efloxatem” (the main active component in angina pectoris). This experiment enriched the teaching content of organic chemistry experiments, improved students’ analytical ability, and cultivated their spirit of scientific exploration.
  • 加载中
    1. [1]

      Kwesiga, G.; Kelling, A.; Kersting, S.; Sperlich, E.; Nickisch-Rosenegk, M.; Schmidt, B. J. Nat. Prod. 2020, 83, 3445.

    2. [2]

      Bautista, J.; Yu, S.; Tian, L. ACS Omega 2021, 6, 5119.

    3. [3]

      Zhang, J.; Qiu, X.; Tan, Q.; Xiao, Q.; Mei, S. J. Agric. Food Chem. 2020, 68, 14463.

    4. [4]

      Golshani, M.; Khoobi, M.; Jalalimanesh, N.; Jafarpour, F.; Ariafard, A. Chem. Commun. 2017, 53, 10676.

    5. [5]

      Cao, D.; Liu, Q.; Jing, W.; Tian, H.; Yan, H.; Bi, W.; Jiang, Y.; Chen, Y. ACS Sustainable Chem. Eng. 2020, 8, 19169.

    6. [6]

      Song, H.; Yang, R.; Zhao, W.; Katiyo, E.; Hua, X.; Zhang, E. J. Agric. Food Chem. 2014, 62, 3806.

    7. [7]

    8. [8]

      Lin, S.; Wade, J. D.; Liu, S. Acc. Chem. Res. 2021, 54, 104.

    9. [9]

      Yatabe, T.; Jin, X.; Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2015, 54, 13302.

    10. [10]

      Rouh, H.; Liu, Y.; Katakam, N.; Pham, L.; Zhu, Y.-L.; Li, G. J. Org. Chem. 2018, 83, 15372.

    11. [11]

      Samir, P.; Umang S. Asian J. Pharm. Clin. Res. 2016, 10 (2), 403.

    12. [12]

      Achraf, L.; Mahmoud, T. Ultrason. Sonochem. 2016, 31, 626.

    13. [13]

      Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17 (12), 71.

    14. [14]

      Wang, L.; Liu, X.; Dong, Z.; Fu, X.; Feng, X. Angew. Chem. Int. Ed. 2008, 120, 8798.

    15. [15]

      Madhu, D.; Sudhakar, M.; Kumar, K. S.; Reddy, D. R.; Sravani, A.; Ramakrishna, K.; Rao, C. H. Russ. J. Gen. Chem. 2017, 87, 2421.

    16. [16]

      Khanapur, M.; Pinna, N. K.; Badiger, J. Med. Chem. Res. 2015, 24, 2656

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    10. [10]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

Metrics
  • PDF Downloads(20)
  • Abstract views(1049)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return