Citation: Zhengli Hu,  Kaili Xin,  Shaochuang Liu,  Chengbing Zhong,  Xueyuan Wu,  Yi-Lun Ying,  Xuanfeng Kong,  Xiaodong Yu,  Jianrong Zhang,  Yi-Tao Long. 生物纳米孔道单分子多肽磷酸化识别与测量的创新综合实验[J]. University Chemistry, ;2022, 37(7): 211108. doi: 10.3866/PKU.DXHX202111089 shu

生物纳米孔道单分子多肽磷酸化识别与测量的创新综合实验

  • 生物纳米孔道技术是一种具有革命性意义的单分子电化学分析方法,经过近三十年的发展,已经能够实现单分子DNA测序并广泛应用于多肽、蛋白质等单个生物分子的检测研究。本文探讨了将纳米孔道单分子测量方法引入大学实验教学的必要性与重要性,介绍了生物纳米孔道单分子实验的教学意义、目的、内容及其组织实施方式。本实验采用“科教融合”的教学模式,针对具有一定化学、生物化学基础知识并对科研感兴趣的二、三年级本科生,精心设计并不断优化教学方案,将纳米孔道单分子电化学及相关交叉领域的最新研究成果融入课堂教学,拓展学生的科研视野、激发学生的科研兴趣。此外,通过教师引导,鼓励学生大胆提出问题,自主探索,合作完成实验内容,培养学生的学术思维和综合创新能力。
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Fang, W. N.; Jia, S. S.; Chao, J.; Wang, L. Q.; Duan, X. Y.; Li, H. J.; Li, Q.; Zuo, X. L.; Wang, L. H.; Wang, L. H.; et al. Sci. Adv. 2019, 5, eaau4506.

    4. [4]

      Wen, J.; Hong, L.; Krainer, G.; Yao, Q. Q.; Knowles, T. P. J.; Wu, S.; Perrett, S. J. Am. Chem. Soc. 2021, 143, 13056.

    5. [5]

      Sun, K.; Ju, Y.; Chen, C.; Zhang, P.; Sawyer, E.; Luo, Y.; Geng, J. Small Methods 2020, 4, 1900892.

    6. [6]

      Guo, B.; Sheng, Y.; Zhou, K.; Liu, Q.; Liu, L.; Wu, H. C. Angew. Chem. Int. Ed. 2018, 57, 3602.

    7. [7]

      Chen, H.; Song, G.; Zhang, Y.; Ni, D.; Zhang, X.; Huang, Y.; Lou, J. Sci. China Life Sci. 2021, 64, 334.

    8. [8]

      Cressiot, B.; Bacri, L.; Pelta, J. Small Methods 2020, 4, 2000090.

    9. [9]

      Deamer, D.; Akeson, M.; Branton, D. Nat. Biotechnol. 2016, 34, 518.

    10. [10]

      Kasianowicz, J.; Brandin, E.; Branton, D.; Deamer, D. Proc. Natl. Acad. Sci. 1996, 93, 13770.

    11. [11]

      Zhang, J.; Hou, L.; Zuo, Z.; Ji, P.; Zhang, X.; Xue, Y.; Zhao, F. Nat. Biotechnol. 2021, 39, 836.

    12. [12]

      Riedl, J.; Ding, Y.; Fleming, A. M.; Burrows, C. J. Nat. Commun. 2015, 6, 8807.

    13. [13]

      Tan, C. S.; Fleming, A. M.; Ren, H.; Burrows, C. J.; White, H. S. J. Am. Chem. Soc. 2018, 140, 14224.

    14. [14]

      Long, Y. T.; Zhang, M. N. Sci. China Ser. B-Chem. 2009, 52, 731.

    15. [15]

      Chen, Z.; Wang, Z.; Xu, Y.; Zhang, X.; Tian, B.; Bai, J. Chem. Sci. 2021, 12, 15750.

    16. [16]

      Brinkerhoff, H.; Kang, A. S. W.; Liu, J.; Aksimentiev, A.; Dekker, C. Science 2021, 374, 1509.

    17. [17]

      Yan, S.; Zhang, J.; Wang, Y.; Guo, W.; Zhang, S.; Liu, Y.; Cao, J.; Wang, Y.; Wang, L.; Ma, F.; et al. Nano Lett. 2021, 21, 6703.

    18. [18]

      Liu, S. C.; Ying, Y. L.; Li, W. H.; Wan, Y. J.; Long, Y. T. Chem. Sci. 2021, 12, 3282.

    19. [19]

      Lucas, F. L. R.; Versloot, R. C. A.; Yakovlieva, L.; Walvoort, M. T. C.; Maglia, G. Nat. Commun. 2021, 12, 5795.

    20. [20]

      Schmid, S.; Stömmer, P.; Dietz, H.; Dekker, C. Nat. Nanotechnol. 2021, 16, 1244.

    21. [21]

      Qing, Y.; Ionescu, S. A.; Pulcu, G. S.; Bayley, H. Science 2018, 361, 908.

    22. [22]

      Qing, Y.; Bayley, H. J. Am. Chem. Soc. 2021, 143, 18181.

    23. [23]

      Jia, W.; Hu, C.; Wang, Y.; Gu, Y.; Qian, G.; Du, X.; Wang, L.; Liu, Y.; Cao, J.; Zhang, S.; et al. Nat. Commun. 2021, 12, 5811.

    24. [24]

      Zhou, B.; Wang, Y.; Cao, C.; Li, D.; Long, Y. Sci. China Chem. 2018, 61, 1385.

    25. [25]

      Gu, Z.; Ying, Y. L.; Long, Y. T. Sci. China Chem. 2018, 61, 1483.

    26. [26]

      Gu, Z.; Wang, H.; Ying, Y. L.; Long, Y. T. Sci. Bull. 2017, 62, 1245.

    27. [27]

      Sui, X. J.; Li, M. Y.; Ying, Y. L.; Yan, B. Y.; Wang, H. F.; Zhou, J. L.; Gu, Z.; Long, Y. T. J. Anal. Test. 2019, 3, 134.

    28. [28]

    29. [29]

      Hu, Z. L.; Ying, Y. L.; Huo, M. Z.; Kong, X. F.; Yu, X. D.; Zhang, J. R.; Long, Y. T. J. Chem. Educ. 2020, 97, 4345.

    30. [30]

      Li, M. Y.; Ying, Y. L.; Yu, J.; Liu, S. C.; Wang, Y. Q.; Li, S.; Long, Y. T. JACS Au 2021, 1, 967.

    31. [31]

      Huo, M. Z.; Hu, Z. L.; Ying, Y. L.; Long, Y. T. Proteomics 2021, e2100041.

    32. [32]

      Li, S.; Wu, X. Y.; Li, M. Y.; Liu, S. C.; Ying, Y. L.; Long, Y. T. Small Methods 2020, 4, 2000014.

    33. [33]

      Wu, X. Y.; Wang, M. B.; Wang, Y. Q.; Li, M. Y.; Ying, Y. Q.; Huang, J.; Long, Y. T. CCS Chem. 2019, 1, 304.

    34. [34]

    35. [35]

    36. [36]

      Hu, Z. L.; Huo, M. Z.; Ying, Y. L.; Long, Y. T. Angew. Chem. Int. Ed. 2021, 133, 14862.

    37. [37]

      Restrepo-Pérez, L.; Joo, C.; Dekker, C. Nat. Nanotechnol. 2018, 13, 786.

    38. [38]

      Cao, C.; Liao, D. F.; Yu, J.; Tian, H.; Long, Y. T. Nat. Protoc. 2017, 12, 1901.

    39. [39]

    40. [40]

      Boukhet, M.; Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Pelta, J.; Oukhaled, A. Nanoscale 2016, 8, 18352.

    41. [41]

    42. [42]

      Wang, H. Y.; Ying, Y. L.; Li, Y.; Kraatz, H. B.; Long, Y. T. Anal. Chem. 2011, 83, 1746.

    43. [43]

    44. [44]

    45. [45]

      Yang, C.; Liu, L.; Zeng, T.; Yang, D. W.; Yao, Z. Y.; Zhao, Y. L.; Wu, H. C. Anal. Chem. 2013, 85, 7302.

    46. [46]

    47. [47]

      Niu, H. Y.; Li, M. Y.; Ying, Y. L.; Long, Y. T. Chem. Sci. 2022, 13, 2456.

  • 加载中
    1. [1]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    2. [2]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Biao Zuo Yizhi Zhang Zhengkai Chen Houkuan Tian Yongneng Wang Wei Zhang Weizu Wang Xuming Zheng Xinping Wang . Strengthening the Functions of Academic Research and Promoting the Integration of Science and Education: Exploration Ways to Cultivate the Talents of Undergraduate Chemistry Students. University Chemistry, 2024, 39(11): 38-43. doi: 10.3866/PKU.DXHX202402066

    7. [7]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

    8. [8]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    9. [9]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    12. [12]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    13. [13]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    17. [17]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Heng Zhang Gang Liu Zhenghu Xu Ying Ma . Construction and Practice of Comprehensive Open and Innovative Chemistry Experimental Teaching System and Platform in the Context of Multidisciplinary Integration. University Chemistry, 2024, 39(7): 56-63. doi: 10.12461/PKU.DXHX202405001

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(16)
  • Abstract views(1003)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return