Citation: Yuxin Wen,  Hui Chao. 生物内源性SO2的荧光检测[J]. University Chemistry, ;2022, 37(3): 211100. doi: 10.3866/PKU.DXHX202111006 shu

生物内源性SO2的荧光检测

  • SO2作为空气污染物而被人们熟知,但鲜有人知道在生物体内SO2也能内源性生成并作为信号分子参与生物体代谢循环,与我们的健康息息相关。SO2在低浓度的时候具有舒张血管、抑制炎症、抗氧化和调节脂质代谢的作用,而在高浓度的时候则会引起某些呼吸道疾病、神经系统紊乱甚至是癌症。由此可见,更深入和全面地了解SO2对维持生物体内系统的稳态和保持生物健康至关重要。本文以生物体内的SO2为线索,从内源性生成,生理作用和荧光检测三大方面阐述了以SO2为代表的新型信号分子在生物体内的流通和检测手段的演变。
  • 加载中
    1. [1]

      Lim, M. H.; Lippard, S. J. Acc. Chem. Res. 2007, 40 (1), 41.

    2. [2]

      (b) Mitsuhashi, H.; Yamashita, S.; Ikeuchi, H.; Kuroiwa, T.; Kanelo, Y.; Hiromura, K.; Ueki, K.; Nojima, Y. Shock 2005, 24, 229.

    3. [3]

      Chen, E. Q.; Tang, Y. H.; Wang, L.; Ren, J. B.; Lin, W. Y. Chin. J. Org. Chem. 2021, 41 (3), 1200.

    4. [4]

      (c) Stipanuk Annu, M. H. Rev. Nutr. 1986, 6, 179.

    5. [5]

      Wang, X.; Sun, J.; Zhang, W. H.; Ma, X. X.; Lv, J. Z.; Tang, B. Chem. Sci. 2013, 4 (6), 2551.

    6. [6]

      (d) Cipollone, R.; Ascenzi, P.; Tomao, P.; Imperi, F.; Visca, P. J. Mol. Microbiol. Biotechnol. 2008, 15, 199.

    7. [7]

      (b) Otsuki, J.; Harada, K.; Araki, K. Chem. Lett. 1999, 28 (3), 269.

    8. [8]

      Sulfur Dioxide:Endogenous Generation, Biological Effects, Detection, and Therapeutic Potential.[2021-10-29]. https://www.liebertpub.com/doi/10.1089/ars.2021.0213

    9. [9]

    10. [10]

      (c) Otsuki, J.; Tsujino, M.; Lizaki, T.; Araki, K.; Seno, M.; Takatera, K.; Watanabe, T. J. Am. Chem. Soc. 1997, 119 (33), 7895.

    11. [11]

      (d) Sun, S.; Lees, A. J. J. Am. Chem. Soc. 2000, 122 (37), 8956.

    12. [12]

      Jiao, X. Y.; Li, Y.; Niu, J. Y.; Xie, X. L.; Wang, X.; Tang, B. Anal. Chem. 2018, 90 (1), 533.

    13. [13]

      Ji, A. J.; Savon, S. R.; Jacobsen, D. W. Clin. Chem. 1995, 41 (6), 897.

    14. [14]

      (e) Pourrieux, G.; Fagalde, F.; Romero, I.; Fontrodona, X.; Parella, T.; Katz, N. E. Inorg. Chem. 2010, 49 (9), 4084.

    15. [15]

      (b) Ghosal, K.; Sarkar, K. ACS Biomater. Sci. Eng. 2018, 4, 2653.

    16. [16]

      Yang, B.; Xu, J.; Zhu, H. L. Free Radic. Bio. Med. 2019, 145, 42.

    17. [17]

      Zhang, H. Y.; Xue, S. H.; Feng, G. Q. Sens. Actuators B Chem. 2016, 231, 752.

    18. [18]

      (c) Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Nano Today 2017, 13, 10.

    19. [19]

      (d) Zhu, S.; Shao, J.; Song, Y.; Zhao, X.; Du, J.; Wang, L.; Wang, H.; Zhang, K.; Zhang, J.; Yang, B. Nanoscale 2015, 7 (17), 7927.

    20. [20]

      Huo, F. J.; Wu, Q.; Yin, C. Y.; Zhang, W. J.; Zhang, Y. B. Spectrochim. Acta, Part A 2019, 214, 429.

    21. [21]

      Zhang, W. J.; Huo, F. J.; Zhang, Y. B.; Yin, C. X. J. Mater. Chem. B 2019, 7, 1945.

    22. [22]

      (b) Mudd, S. H.; Irreverre, F.; Laster, L. Science 1967, 156 (3782), 1599.

    23. [23]

      Stipanuk, M. H.; Dominy J. E., Jr.; Lee, J.; Coloso, R. M. J. Nutr. 2006, 136, 1652S.

    24. [24]

      Sun, Y. Q.; Jing, L.; Zhang, J. Y.; Yang, T.; Guo, W. Chem. Commum. 2013, 49 (26), 2637.

    25. [25]

      Li, G. Y.; Chen, Y.; Wang, J. Q.; Lin, Q.; Zhao, J.; Ji, L. N.; Chao, H. Chem. Sci. 2013, 4 (12), 4426.

    26. [26]

      (a) Stipanuk, M. H.; Rosa, J. D.; Hirschberger, L. L. J. Nutr. 1990, 120, 450.

    27. [27]

      Li, G. Y.; Chen, Y.; Wang, J. Q.; Wu, J. H.; Gasser, G.; Ji, L. N.; Chao, H. Biomaterials 2015, 63, 128.

    28. [28]

      (a) Otsuki, J.; Sato, K.; Tsujino, M.; Okuda, N.; Araki, K.; Seno, M. Chem. Lett. 1996, 25 (10), 847.

    29. [29]

      Li, G. Y.; Chen, Y.; Wang, J. Q.; Lin, Q.; Zhao, J.; Ji, L. N.; Chao, H. Chem. Sci. 2013, 4 (12), 4426.

    30. [30]

      Chen, W. Q.; Fang, Q.; Yang, D. L.; Zhang, H. Y.; Song, X. Z.; Foley, J. Anal. Chem. 2015, 87 (1), 609.

    31. [31]

      Li, G. Y.; Chen, Y.; Wang, J. Q.; Wu, J. H.; Gasser, G.; Ji, L. N.; Chao, H. Biomaterials 2015, 63, 128.

    32. [32]

      (a) Chandra, A.; Deshpande, S.; Shinde, D. B.; Pillai, V. K.; Singh, N. ACS Macro Lett. 2014, 3 (10), 1064.

    33. [33]

      Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc. Chem. Res. 2013, 46 (7), 1462.

    34. [34]

      Li, G. H.; Ma, Y. Y.; Pei, M. S.; Lin, W. Y. Anal. Chem. 2019, 91 (22), 14586.

    35. [35]

      Zhang, W. J.; Huo, F. J.; Cheng, F. Q.; Yin, C. X. J. Am. Chem. Soc. 2020, 142 (13), 6324.

    36. [36]

      Feng, G. F.; Luo, X. Y.; Lu, X.; Xie, S. Y.; Deng, L.; Kang, W. Y.; He, F.; Zhang, J. H.; Lei, C. Y.; Lin, B.; et al. Angew. Chem. 2019, 58 (20), 6590.

    37. [37]

      (a) Kisker, C.; Schindelin, H.; Pacheco, A.; Wehbi, W. A.; Garrett, R. M. Cell 1997, 91 (7), 973.

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(9)
  • Abstract views(1436)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return