Citation: Qiuxiang Wang,  Yixin Liu,  Kun Ge,  Jinchao Zhang,  Guoqiang Zhou. 无机纳米材料在骨代谢调控中的应用[J]. University Chemistry, ;2022, 37(3): 211100. doi: 10.3866/PKU.DXHX202111005 shu

无机纳米材料在骨代谢调控中的应用

  • 与有机和高分子纳米材料相比,无机纳米材料具有化学性质稳定、力学性能优良、生物相容性和骨诱导性良好等优势,是用于骨代谢调控的主要材料。文章分别从细胞、分子及动物水平总结了羟基磷灰石、稀土纳米材料、金纳米颗粒、碳纳米管等无机纳米材料在骨代谢调控中的作用及其机制,并对无机纳米材料在骨代谢调控中面临的挑战进行了展望。
  • 加载中
    1. [1]

      Olszta, M. J.; Cheng, X.; Jee, S. S.; Kumar, R.; Kim, Y.-Y.; Kaufman, M. J.; Douglas, E. P.; Gower, L. B. Mater. Sci. Eng. R. Rep. 2007, 58, 77.

    2. [2]

      Cimatti, B.; Santos, M. A. D.; Brassesco, M. S.; Okano, L. T.; Barboza, W. M.; Nogueira-Barbosa, M. H.; Engel, E. E. J. Biomed. Mater. Res. Part B 2018, 106, 649.

    3. [3]

      Nauth, A.; Schemitsch, E.; Norris, B.; Nollin, Z.; Watson, J. T. J. Orthop. Trauma 2018, 32 (Suppl. 3), S7.

    4. [4]

      Pariente, E.; Olmos, J. M.; Landeras, R.; Nan, D.; Gonzalez-Macias, J.; Hernandez, J. L. J. Bone Miner. Metab. 2017, 35, 114.

    5. [5]

      Ibrahim, M.; Labaki, M.; Giraudon, J.-M.; Lamonier, J.-F. J. Hazard. Mater. 2020, 383, 121.

    6. [6]

      Panda, S.; Biswas, C. K.; Paul, S. Ceram. Int. 2021, 47, 28122.

    7. [7]

      Yuan, K. J.; Mei, J. T.; Shao, D. D.; Zhou, F.; Qiao, H.; Liang, Y. K.; Li, K.; Tang, T. T. Int. J. Nanomed. 2020, 15, 6355.

    8. [8]

      Kargozar, S.; Montazerian, M.; Fiume, E.; Baino, F. Front. Bioeng. Biotechnol. 2019, 7, 161.

    9. [9]

      Eivazzadeh-Keihan, R.; Maleki, A.; de la Guardia, M.; Bani, M. S.; Chenab, K. K.; Pashazadeh-Panahi, P.; Baradaran, B.; Mokhtarzadeh, A.; Hamblin, M. R. J. Adv. Res. 2019, 18, 185.

    10. [10]

      Rafaela-Maria, K.; Catarina, C. C.; Varvara, P.; Paulo, A. Q.; Maria, C. Nanomaterials 2021, 30, 2890.

    11. [11]

      Remya, N. S.; Syama, S.; Gayathri, V.; Varma, H. K.; Mohanan, P. V. Colloids Surf. B 2014, 117, 389.

    12. [12]

    13. [13]

      Shi, X.; Zhou, K.; Huang, F.; Zhang, J.; Wang, C. Int. J. Nanomed. 2018, 13, 1457.

    14. [14]

      Zhou, P.; Wu, J.; Xia, Y.; Yuan, Y.; Zhang, H.; Xu, S.; Lin, K. Int. J. Nanomed. 2018, 13, 4083.

    15. [15]

      Iwamoto, T.; Hieda, Y.; Kogai, Y. Mater. Sci. Eng. C 2016, 69, 1263.

    16. [16]

      Long, X.; Xu, H.; Zhang, D.; Li, J. Polym. Chem. 2020, 11, 4995.

    17. [17]

    18. [18]

      Shi, X.; Zhou, K.; Huang, F.; Wang, C. Int. J. Nanomed. 2017, 12, 5781.

    19. [19]

    20. [20]

      Ha, S. W.; Jang, H. L.; Nam, K. T.; Beck, G. R., Jr. Biomaterials 2015, 65, 32.

    21. [21]

      Wang, C.; Liu, D. D.; Zhang, C. M.; Sun, J.; Feng, W. P.; Liang, X. J.; Wang, S. X; Zhang, J. C. ACS Appl. Mater. Interfaces 2016, 8, 11262.

    22. [22]

      Ha, S. W.; Park, J.; Habib, M. M.; Beck, G. R., Jr. ACS Appl. Mater. Interfaces 2017, 9, 39185.

    23. [23]

      Liu, Q.; Xiang, P.; Chen, M.; Luol, Y.; Zhao, Y.; Zhu, J.; Jing, W.; Yu, H. Int. J. Nanomed. 2021, 16, 3633.

    24. [24]

      Zhu, W. M.; Wang D. P.; Peng, L. Q.; Zhang, X. J.; Ou, Y. K.; Fen, W. Z.; Lu, W.; Han, Y.; Zeng, Y. J. Artif. Cell Nanomed. B 2013, 41, 304.

    25. [25]

      Lambert, F.; Bacevic, M.; Layrolle, P.; Schüpbach, P.; Drion, P.; Rompen, E. Clin. Oral. Implants. Res. 2017, 28, e201.

    26. [26]

      Liang, W.; Ding, P. B.; Li, G.; Lu, E. H.; Zhao, Z. M. Drug Des. Devel. Ther. 2021, 15, 3347.

    27. [27]

      Zhou, G. Q.; Gu, G. Q.; Li, Y.; Zhang, Q.; Wang, W. Y.; Wang, S. X.; Zhang, J. C. Biol. Trace Elem. Res. 2013, 153, 411.

    28. [28]

      Zhang, Q.; Ge, K.; Duan, J. L.; Chen, S. Z.; Zhang, R.; Zhang, C. M.; Wang, S. X.; Zhang, J. C. J. Nanopart. Res. 2014, 16, 2697.

    29. [29]

      Zhou, G. Q.; Li, Y. F; Ma, Y. Y.; Liu, Z.; Cao, L. L.; Wang, D.; Liu, S. D.; Xu, W. S.; Wang, W. Y. J. Nanopart. Res. 2016, 18, 135.

    30. [30]

      Yu, L. K.; Lin, R. L.; Han, Y.; Fan, D. H.; Zhou, G. Q.; Zhang, J. C.; Jia, G.; Ge, K. J. Nanopart. Res. 2020, 23, 137.

    31. [31]

      Liu, H. F.; Zhang, C. M.; Tan, Y. L.; Wang, J. G.; Wang, K.; Zhao, Y. Y.; Jia, G.; Hou, Y. J.; Wang, S. X.; Zhang, J. C. J. Nanopart. Res. 2014, 16, 2303.

    32. [32]

      Liu, H. F.; Jia, G.; Chen, S. Z.; Ma, H. Y.; Zhao, Y. Y.; Wang, J. G.; Zhang, C. M.; Wang, S. X.; Zhang, J. C. RSC Adv. 2015, 5, 73601.

    33. [33]

      Liu, H. F.; Zhao, W. C.; Wang, X. C.; Jia, G.; Jin, Y.; Ge, K.; Ma, H. Y; Zhang, J. C. J. Rare Earth 2017, 35,1126.

    34. [34]

      Chu, M.; Sun, Z.; Fan, Z.; Yu, D.; Mao, Y.; Guo, Y. Theranostics 2021, 11, 6717.

    35. [35]

      Liu, D. D.; Zhang, J. C.; Yi, C. Q.; Yang, M. S. Chin. Sci. Bull. 2010, 55, 1013.

    36. [36]

      Li, J. C.; Li, J. J.; Zhang, J.; Wang, X. L.; Kawazoe, N.; Chen, G. P. Nanoscale 2016, 8, 7992.

    37. [37]

      Ko, W. K.; Heo, D. N.; Moon, H.-J.; Lee, S. J.; Bae, M. S.; Lee, J. B.; Sun, I.-C.; Jeon, H. B.; Park, H. K.; Kwon, I. K. J. Colloid Interface Sci. 2015, 438, 68.

    38. [38]

      Zhang, Y.; Kong, N.; Zhang, Y.; Yang, W.; Yan, F. Theranostics 2017, 7, 1214.

    39. [39]

      Sul, O. J.; Kim, J. C.; Kyung, T. W.; Kim, H. J.; Kim, Y. Y.; Kim, S. H.; Kim, J. S.; Choi, H. S. Biosci. Biotechnol. Biochem. 2010, 74, 2209.

    40. [40]

      Yi, C. Q.; Liu, D. D.; Fong, C. C.; Zhang, J. C.; Yang, M. S. ACS Nano 2010, 4, 6439.

    41. [41]

      Bai, X.; Gao, Y.; Zhang, M. Y; Chang, Y. N.; Chen, K.; Li, J.; Zhang, J.; Liang, Y.; Kong, J. L; Wang, Y J.; et al. Nanoscale 2020, 12, 3871.

    42. [42]

      Zhang, Y.; Wang, P.; Wang, Y.; Li, J.; Qiao, D.; Chen, R.; Yang, W.; Yan, F. Int. J. Nanomed. 2021, 16, 61.

    43. [43]

      Usui, Y.; Aoki, K.; Narita, N.; Murakami, N.; Nakamura, I.; Nakamura, K.; Ishigaki, N.; Yamazaki, H.; Horiuchi, H.; Kato, H.; et al. Small 2008, 4, 240.

    44. [44]

      Liu, D. D.; Yi, C. Q.; Zhang, D. W; Zhang, J. C.; Yang, M. S. ACS Nano 2010, 4, 2185.

    45. [45]

      Baik, K. Y.; Park, S. Y.; Heo, K.; Lee, K. B.; Hong, S. Small 2011, 7, 741.

    46. [46]

      Tay, C. Y.; Gu, H.; Leong, W. S.; Yu, H.; Li, H. Q.; Heng, B. C.; Tantang, H.; Loo, S. C. J.; Li, L. J.; Tan, L. P. Carbon 2010, 48, 1095.

    47. [47]

      Sa, M. A.; Ribeiro, H. J.; Valverde, T. M.; Sousa, B. R.; Martins-Junior, P. A.; Mendes, R. M.; Ladeira, L. O.; Resende, R. R.; Kitten, G. T.; Ferreira, A. J. Braz. J. Med. Biol. Res. 2016, 49 (2), e4888.

    48. [48]

      Du, Z.; Feng, X.; Cao, G.; She, Z.; Tan, R.; Aifantis, K. E.; Zhang, R.; Li, X. Bioact. Mater. 2021, 6, 333.

    49. [49]

      Tanaka, M.; Sato, Y.; Zhang, M.; Haniu, H.; Okamoto, M.; Aoki, K.; Takizawa, T.; Yoshida, K.; Sobajima, A.; Kamanaka, T. Nanomaterials 2017, 7, 46.

    50. [50]

      Tanaka, M.; Sato, Y.; Haniu, H.; Nomura, H.; Kobayashi, S.; Takanashi, S.; Okamoto, M.; Takizawa, T.; Aoki, K.; Usui, Y. PLoS One 2017, 12, e0172601.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    17. [17]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    18. [18]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    19. [19]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(4)
  • Abstract views(951)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return