Citation: Yuemin Zhou,  Xiaoyu Wang,  Ruikang Tang. 从生物矿化到仿生矿化:构筑新功能生命体[J]. University Chemistry, ;2022, 37(3): 211100. doi: 10.3866/PKU.DXHX202111002 shu

从生物矿化到仿生矿化:构筑新功能生命体

  • Received Date: 1 November 2021

  • 生物矿化是生命体通过调控无机矿物的成核、取向、生长和组装来制造有机-无机复合材料的过程。借鉴生物矿化的原理,可利用有机基质实现无机材料的可控合成,制备出性能优异的新型复合材料。更有趣的是,将材料和生物体从结构和功能两个层面整合,利用材料-生物之间的协同调控,可构筑出新功能生命体,这也是仿生矿化发展的重要方向。本论文首先介绍生物矿化的基本理论和自然界中的生物矿化现象。随后通过对生物矿物结构和功能的阐述,提出仿生构筑新功能生命体的概念,并系统介绍构筑新型材料-生物体的方法,在此基础上系统总结新功能生命体在环保、能源、医学等领域的应用。最后,针对目前该领域存在的局限和问题展开讨论,对实现智能仿生构筑生命体的研究进行展望。我们认为基于仿生矿化构筑新功能生命体的研究能够推动学科边界不断融合,为材料学、化学生物学、生物无机化学以及医学等领域的发展提供新的方向。
  • 加载中
    1. [1]

      Estroff, L. A. Chem. Rev. 2008, 108, 4329.

    2. [2]

      Weiss, I. M.; Tuross, N.; Addadi, L. I. A.; Weiner, S. J. Exp. Zool. 2002, 293, 478.

    3. [3]

      Tao, J. H.; Zhou, D. M.; Zhang, Z. S.; Xu, X. H.; Tang, R. K. Proc. Natl. Acad. Sci. USA 2009, 106, 22096.

    4. [4]

      Nudelman, F.; Lausch, A. J.; Sommerdijk, N. A. J. M.; Sone, E. D. J. Struct. Biol. 2013, 183, 258.

    5. [5]

      Nudelman, F.; Sommerdijk, N. A. J. M. Angew. Chem. Int. Ed. 2012, 51, 6582.

    6. [6]

      Deshpande, A. S.; Beniash, E. Cryst. Growth Des. 2008, 8, 3084.

    7. [7]

      Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y.; et al. Science 2016, 354, 107.

    8. [8]

      Johnson, W. A. J.; Herschler, B. A. Acta Biomater. 2011, 7, 16.

    9. [9]

      Cochrane, N.; Cai, F.; Huq, N.; Burrow, M.; Reynolds, E. J. Dent. Res. 2010, 89, 1187.

    10. [10]

      Liu, Y.; Kim, Y.; Dai, L.; Li, N.; Khan, S.; Pashley, D.; Tay, F. Biomaterials 2011, 32, 1291.

    11. [11]

      Landis, W.; Silver, F.; Freeman, J. J. Mater. Chem. 2006, 16, 1495.

    12. [12]

      Lin, C. R.; Tseng, Y. T.; Ovchinnikov, S. G.; Ivantsov, R. D.; Edelman, I. S.; Fedorov, A. S.; Kuzubov, A. A.; Fedorov, D. A.; Starchikov, S. S.; Lyubutin, I. S. Mater. Res. Express. 2014, 1, 13.

    13. [13]

      Hildebrand, M. Chem. Rev. 2008, 108, 4855.

    14. [14]

      Walker, J.; Spear, J.; Pace, N. Nature 2005, 434, 1011.

    15. [15]

      Maginn, E. Biomineralisation and Geochemistry of Hydrothermal Vent Fauna[PhD Dissertation]. University of Southampton:Southampton, UK, 2002.

    16. [16]

      Wang, X. Y.; Deng, Y. Q.; Li, S. H.; Wang, G. C.; Qin, E.; Xu, X. R.; Tang, R. K.; Qin, C. F. Adv. Healthc. Mater. 2012, 1, 443.

    17. [17]

      Weiner, S.; Dove, P. M. Rev. Mineral. Geochem. 2003, 54, 1.

    18. [18]

      Simkiss, K. Cellular Aspects of Calcification. In The Mechanisms of Mineralization in the Invertebrates and Plants; Watabe, N., Wilbur, K. M., Eds.; University of South Carolina Press:Columbia, USA, 1976; pp. 1-31.

    19. [19]

      Simkiss, K. The Processes of Biomineralization in Lower Plants and Animals:An Overview. In Biomineralization in Lower Plants and Animals; Leadbeater, B. S. C., Riding, R., Eds.; Oxford University Press:Oxford, New York, USA 1986; pp. 19-37.

    20. [20]

      Hauschka, P. V.; Lian, J. B.; Cole, D. E. C.; Gundberg, C. M. Physiol. Rev. 1989, 69, 990.

    21. [21]

      Hoang, Q. Q.; Sicheri, F.; Howard, A. J; Yang, D. S. C. Nature 2003, 425, 977.

    22. [22]

      Alves, N. M.; Leonor, I. B.; Azevedo, H. S.; Reis, R. L.; Mano, J. F. J. Mater. Chem. 2010, 20, 2911.

    23. [23]

      Palmer, L. C.; Newcomb, C. J.; Kaltz, S. R.; Spoerke, E. D.; Stupp, S. I. Chem. Rev. 2008, 108, 4754.

    24. [24]

      Zhou, Y.; Hu, Z.; Ge, M.; Jin, W.; Tang, R.; Li, Q.; Xu, W.; Shi, J.; Xie, Z. Int. J. Nanomed. 2021, 16, 6217.

    25. [25]

      Dogan, S.; Fong, H.; Yucesoy, D. T.; Cousin, T.; Gresswell, C.; Dag, S.; Huang, G.; Sarikaya, M. ACS Biomater. Sci. Eng. 2018, 4, 1788.

    26. [26]

      Dey, A.; Bomans, P. H. H.; Mueller, F. A.; Will, J.; Frederik, P. M.; de With, G.; Sommerdijk, N. A. J. M. Nat. Mater. 2010, 9, 1010.

    27. [27]

      Berthoud, V. M.; Gao, J.; Minogue, P. J.; Jara, O.; Mathias, R. T.; Beyer, E. C. Int. J. Mol. Sci. 2020, 21, 5822.

    28. [28]

      Wang, B.; Liu, P.; Jiang, W. G.; Pan, H. H.; Xu, X. R.; Tang, R. K. Angew. Chem. Int. Ed. 2008, 47, 3560.

    29. [29]

      Lin, J. K.; Wang, X. Y.; Tang, R. K. J. Biol. Inorg. Chem. 2019, 24, 467.

    30. [30]

      Yao, S. S.; Jin, B.; Liu, Z. M.; Shao, C. Y.; Zhao, R. B.; Wang, X. Y.; Tang, R. K. Adv. Mater. 2017, 29, 1605903.

    31. [31]

      Omelon, S. J.; Grynpas, M. D. Chem. Rev. 2008, 108, 4694.

    32. [32]

      Sahney, S.; Wilson, M. V. H. J. Vert. Paleontol. 2001, 21, 660.

    33. [33]

      Uebe, R.; Schuler, D. Nat. Rev. Microbiol. 2016, 14, 621.

    34. [34]

      Berridge, M. J. BioEssays 1995, 17, 491.

    35. [35]

      Weiss, I. M.; Tuross, N.; Addadi, L. I. A.; Weiner, S. J. Exp. Zool. 2002, 293, 478.

    36. [36]

      Beniash, E.; Aizenberg, J.; Addadi, L.; Weiner, S. Proc. R. Soc. Lond. B 1997, 264, 461.

    37. [37]

      Addadi, L. Angew. Chem. Int. Ed. 2009, 48, 847.

    38. [38]

      Kröger, N.; Poulsen, N. Annu. Rev. Genet. 2008, 42, 83.

    39. [39]

      Wicke, W. Bot. Zeit. 1861, 19, 97.

    40. [40]

      Shimizu, K.; Cha, J.; Stucky, G. D.; Morse, D. E. Proc. Natl. Acad. Sci. USA 1998, 95, 6234.

    41. [41]

      Barber-Zucker, S.; Zarivach, R. ACS Chem. Biol. 2017, 12, 13.

    42. [42]

      Lu, D.; Barber, A. H. J. R. Soc. Interface 2012, 9, 1318.

    43. [43]

      Guo, Z.; Richardson, J. J.; Kong, B.; Liang, K. Sci. Adv. 2020, 6, 330.

    44. [44]

      Addadi, L.; Moradian, J.; Shay, E.; Maroudas, N. G.; Weiner, S. Proc. Natl. Acad. Sci. USA 1987, 84, 2732.

    45. [45]

      Lee, N.; Sverjensky, D. A.; Hazen, R. M. Environ. Sci. Technol. 2014, 48, 9358.

    46. [46]

      Zhou, H. Y.; Wang, G. C.; Wang, X. Y.; Song, Z. Y.; Tang, R. K. Angew. Chem. Int. Ed. 2017, 56, 12908.

    47. [47]

      Wang, G. C.; Li, X. F.; Mo, L. J.; Song, Z. Y.; Chen, W.; Deng, Y. Q.; Zhao, H.; Qin, E.; Qin, C. F.; Tang, R. K. Angew. Chem. Int. Ed. 2012, 51, 10576.

    48. [48]

      Kim, I.; Kang, K.; Oh, M. H.; Yang, M. Y.; Park, I.; Nam, Y. S. Adv. Funct. Mater. 2017, 27, 1703262.

    49. [49]

      Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684.

    50. [50]

      Wang, Q.; Zhang, X.; Liao, H.; Sun, Y.; Ding, L.; Teng, Y.; Zhu, W. H.; Zhang, Z.; Duan, Y. Adv. Funct. Mater. 2018, 28, 1706124.

    51. [51]

      Yang, J.; Yang, Y. W. Small 2020, 16, 1906846.

    52. [52]

      Pettinari, C.; Pettinari, R.; Nicola, C. D.; Tombesi, A.; Scuri, S.; Marchetti, F. Coord. Chem. Rev. 2021, 446, 214121.

    53. [53]

      Yan, S. Q.; Zeng, X. M.; Wang, Y.; Liu, B. F. Adv. Healthc. Mater. 2020, 9, 2070036.

    54. [54]

      Luzuriaga, M. A.; Welch, R. P.; Dharmarwardana, M.; Benjamin, C. E.; Li, S.; Shahrivarkevishahi, A.; Popal, S.; Tuong, L. H.; Creswell, C. T.; Gassensmith, J. ACS Appl. Mater. Interfaces 2019, 11, 9740.

    55. [55]

      Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P. Nat. Commun. 2015, 6, 7240.

    56. [56]

      Teramura, Y.; Ekdahl, K. N.; Fromell, K.; Nilsson, B.; Ishihara, K. Langmuir 2020, 36, 12088.

    57. [57]

      Decher, G. Science 1997, 277, 1232.

    58. [58]

      Liu, Z. M.; Xu, X. R.; Tang, R. K. Adv. Funct. Mater. 2016, 26, 1862.

    59. [59]

      Zheng, J.; Rahman, N.; Li, L.; Zhang, J.; Tan, H.; Xue, Y.; Zhao, Y.; Zhai, J.; Zhao, N.; Xu, F.; et al. Mater. Sci. Eng. C 2021, 128, 112295.

    60. [60]

      Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A.; et al. Science 2011, 332, 805.

    61. [61]

      Xiong, W.; Yang, Z.; Zhai, H. L.; Wang, G. C.; Xu, X. R.; Ma, W. M.; Tang, R. K. Chem. Commun. 2013, 49, 7525.

    62. [62]

      Jiang, N.; Yang, X. Y.; Deng, Z.; Wang, L.; Hu, Z. Y.; Tian, G.; Ying, G. L.; Shen, L.; Zhang, M. X.; Su, B. L. Small 2015, 11, 2003.

    63. [63]

      Magne, D.; Bluteau, G.; Faucheux, C.; Palmer, G.; Colombeix, C. V.; Pilet, P.; Roullon, T.; Caverzasio, J.; Weiss, P.; Daculsi, G.; et al. J. Bone Miner. Res. 2003, 18, 1430.

    64. [64]

      Mahamid, J.; Sharir, A.; Gur, D.; Zelzer, E.; Addadi, L.; Weiner, S. J. J. Struct. Biol. 2011, 174, 527.

    65. [65]

      Ma, X.; Chen, H.; Yang, L.; Wang, K.; Guo, Y.; Yuan, L. Angew. Chem. Int. Ed. 2011, 50, 7414.

    66. [66]

      Ma, X. M.; Liu, P.; Tian, Y. Y.; Zhu, G. S.; Yang, P.; Wang, G.; Yang, L. Nanoscale 2018, 10, 3489.

    67. [67]

      Okuda, M.; Eloi, J. C.; Jones, S. E.; Verwegen, M.; Cornelissen, J. J.; Schwarzacher, W. Nanotechnology 2016, 27, 095605.

    68. [68]

      Marin, F.; Luquet, G. Unusually Acidic Proteins in Biomineralization. In Handbook of Biomineralization: Biological Aspects and Structure Formation; Bäuerlein, E., Behrens, P., Epple, M., Eds.; Wiley-VCH:Weinheim, Germany, 2007; pp. 273-290.

    69. [69]

      Wang, G. C.; Cao, R. Y.; Chen, R.; Mo, L.; Han, J. F.; Wang, X.; Xu, X.; Jiang, T.; Deng, Y. Q.; Lyu, K.; et al. Proc. Natl. Acad. Sci. USA 2013, 110, 7619.

    70. [70]

      Lee, S. Y.; Royston, E.; Culver, J. N.; Harris, M. T. Nanotechnology 2005, 16, 435.

    71. [71]

      Arakaki, A.; Goto, M.; Maruyama, M.; Yoda, T.; Tanaka, M.; Yamagishi, A.; Yoshikuni, Y.; Matsunaga, T. Biotechnol. J. 2020, 15, 2000278.

    72. [72]

      Matsumoto, Y.; Chen, R.; Anikeeva, P.; Jasanoff, A. Nat. Commun. 2015, 6, 8721.

    73. [73]

      Trofimov, A. A.; Pawlicki, A. A.; Borodinov, N.; Mandal, S.; Mathews, T. J.; Hildebrand, M.; Ziatdinov, M. A.; Hausladen, K. A.; Urbanowicz,P. K.; Steed, C. A.; et al. npj Comput. Mater. 2019, 5, 67.

    74. [74]

      Xu, H.; Cao, B.; George, A.; Mao, C. Biomacromolecules 2011, 12, 2193.

    75. [75]

      Matsumoto, Y.; Chen, R.; Anikeeva, P.; Jasanoff, A. Nat. Commun. 2015, 6, 8721.

    76. [76]

      Ramesh, P.; Hwang, S. J.; Davis, H. C.; Lee-Gosselin, A.; Bharadwaj, V.; English, M. A.; Sheng, J.; Iyer, V.; Shapiro, M. G. Angew. Chem. Int. Ed. 2018, 57, 12385.

    77. [77]

      Zhu, W.; Guo, J.; Amini, S.; Ju, Y.; Agola, J. O.; Zimpel, A.; Shang, J.; Noureddine, A.; Caruso, F.; Wuttke, S.; et al. Adv. Mater. 2019, 31, 1900545.

    78. [78]

      Wang, G. C.; Wang, L. J.; Liu, P.; Yan, Y.; Xu, X. R.; Tang, R. K. CheBioChem 2010, 11, 2368.

    79. [79]

      Wang, G.; Wang, H. J.; Zhou, H.; Nian, Q. G.; Song, Z.; Deng, Y. Q.; Wang, X.; Zhu, S. Y.; Li, X. F.; Qin, C. F. ACS Nano 2015, 9, 799.

    80. [80]

      Su, D.; Liu, X.; Liu, L.; Wang, L.; Xie, H.; Zhang, H.; Meng, X.; Huang, X. Adv. Funct. Mater. 2018, 28, 1705699.

    81. [81]

      Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Nature 2001, 409, 258.

    82. [82]

      Ji, Z.; Zhang, H.; Liu, H.; Yaghi, O. M.; Yang, P. D. Proc. Natl. Acad. Sci. USA 2018, 115, 10582.

    83. [83]

      Zhang, Z.; Zhang, X.; Liu, B.; Liu, J. J. Am. Chem. Soc. 2017, 139, 5412.

    84. [84]

      Li, W.; Liu, Z.; Liu, C. Q.; Guan, Y. J.; Ren, J. S.; Qu, X. G. Angew. Chem. Int. Ed. 2017, 56, 13661.

    85. [85]

      Wang, X. Y.; Yang, D.; Li, S.; Xu, X. R.; Qin, C.; Tang, R. K. Biomaterials 2016, 106, 286.

    86. [86]

      Song, Z.; Liu, L.; Wang, X.; Deng, Y.; Nian, Q.; Wang, G.; Zhu, S.; Li, X.; Zhou, H.; Jiang, T.; et al. Chem. Commun. 2016, 52, 1879.

    87. [87]

      Xiong, W.; Zhao, X. H.; Zhu, G. X.; Shao, C. Y.; Li, Y.; Ma, W.; Xu, X. R.; Tang, R. K. Angew. Chem. Int. Ed. 2015, 54, 11961.

    88. [88]

      Xiong, W.; Tang, Y.; Shao, C. Y.; Zhao, Y. B.; Jin, B.; Huang, T.; Miao, Y.; Shu, L.; Ma, W.; Xu, X. R.; Tang, R. K. Environ. Sci. Technol. 2017, 51, 12717.

    89. [89]

      Goldstein, J.; Siviglia, G.; Hurst, R.; Lenny, L.; Reich, L. Science 1982, 215, 168.

    90. [90]

      Salomao, M.; Zhang, X.; Yang, Y.; Lee, S.; Hartwig, J. H.; Chasis, J. A.; Mohandas, N.; An, X. Proc. Natl. Acad. Sci. USA 2008, 105, 8026.

    91. [91]

      Zhao, R. Q.; Fan, M. J.; Chen, Y. N.; Liu, Z. M.; Shao, C. Y.; Jin, B.; Wang, X. Y.; Hui, L. L.; Wang, S. F.; Liao, Z. P.; et al. Sci. Adv. 2020, 6, 9679.

    92. [92]

      Xu, C.; Lee, W.; Dai, G.; Hong, Y. ACS Appl. Mater. Interfaces 2018, 10, 9969.

    93. [93]

      Lee, M. K.; Rich, M. H.; Lee, J.; Kong, H. Biomaterials 2015, 58, 26.

    94. [94]

      Zhao, R. B.; Wang, B; Yang, X. Y.; Xiao, Y.; Wang, X. Y.; Shao, C. Y.; Tang, R. K. Angew. Chem. Int. Ed. 2016, 55, 5225.

    95. [95]

      Klesing, J.; Wiehe, A.; Gitter, B.; Gräfe, S.; Epple, M. J. Mater. Sci. Mater. Med. 2010, 21, 887.

    96. [96]

      Zhang, M.; Song, R. X.; Liu, Y. Y.; Yi, Z. G.; Meng, X. F.; Zhang, J. W.; Tang, Z. M.; Yao, Z. W.; Liu, Y.; Liu, X. G.; et al. Chem 2019, 5, 2171.

    97. [97]

      Zhao, Y. B.; Liu, X. Y.; Yang, X. Y.; Jin, B.; Shao, C. Y.; Kang, W. J.; Tang, R. K. Adv. Mater. 2018, 30, 1801304.

    98. [98]

      Xiao, Y.; Wang, X. Y.; Wang, B.; Liu, X. Y.; Xu, X. R.; Tang, R. K. Theranostics 2017, 7, 4301.

    99. [99]

      Liu, W.; Ruan, M. L.; Liu, L.; Ji, X.; Ma, Y.; Yuan, P.; Tang, G.; Lin, H.; Dai, J.; Xue, W. Theranostics 2020, 10, 2201.

    100. [100]

      Chen, H.; Bai, Z.; Dai, X.; Zeng, X.; Cano, Z. P.; Xie, X.; Zhao, M.; Li, M.; Wang, H.; Chen, Z.; et al. Angew. Chem. Int. Ed. 2019, 58, 6663.

    101. [101]

      Zhang, H.; Liu, H.; Tian, Z.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. Nat. Nanotechnol. 2018, 13, 900.

    102. [102]

      Guo, N.; Wang, Y. N.; Hui, X. R.; Zhao, Q. Y.; Zeng, Z. S.; Pan, S. A.; Guo, Z. W.; Yin, Y. S.; Liu, T. J. Mater. Sci. Technol. 2021, 66, 82.

    103. [103]

      Guo, S.; Zhang, J.; Li, M.; Zhou, N.; Song, W.; Wang, Z.; Qi, S. Sci. Total Environ. 2021, 20, 145241.

    104. [104]

      Zhao, Y. Q.; Tang, R. K. Acta Biomater. 2021, 120, 57.

    105. [105]

      Luz, G. M.; Mano, J. F. Compos. Sci. Technol. 2010, 70, 1777.

    106. [106]

      Wang, Y. N.; Jiang, S. Q.; Pan, H. H.; Tang, R. K. CrystEngComm 2016, 18, 379.

    107. [107]

      Shao, C. Y.; Jin, B.; Mu, Z.; Lu, H.; Zhao, Y. Q.; Wu, Z. F.; Yan, L.; Zhang, Z.; Zhou, Y. C.; Pan, H. H.; et al. Sci. Adv. 2019, 5, 9569.

    108. [108]

      Yao, S. S.; Lin, X. F.; Xu, Y. F.; Chen, Y. W.; Qiu, P. C.; Shao, C. Y.; Jin, B.; Mu, Z.; Sommerdijk, N. A. J. M.; Tang, R. K. Adv. Sci. 2019, 6, 1900683.

    109. [109]

      Hu, Q. H.; Ji, H. J.; Liu, Y. K.; Zhang, M.; Xu, X. R.; Tang, R. K. Biomed. Mater. 2010, 5, 041001.

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    3. [3]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    7. [7]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    17. [17]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

Metrics
  • PDF Downloads(15)
  • Abstract views(1077)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return