Citation: Zipeng Chen,  Yuqin Zhao,  Chen Wang,  Xiuxiu Wang,  Wei Wei,  Jing Zhao. 生物合成高能化学物质[J]. University Chemistry, ;2022, 37(3): 211000. doi: 10.3866/PKU.DXHX202110003 shu

生物合成高能化学物质

  • 从分子到细胞,从个体到社会,能量的需求和转化无处不在。探索高能物质的合成与利用,具有较重要的科学意义和应用价值。目前高能物质的化学合成通常污染较大、耗能较高,且往往副产物较多,难以分离纯化。相较于传统的化学合成方法,生物合成具有绿色环保和高效利用清洁能源等特点,是符合国家“碳中和”目标的新型合成路径。高能物质的生物合成,将是未来的迅速发展方向之一。本文将从能源物质、含能材料和天然高能物质三个方面,选取四种代表性高能物质,介绍其生物合成途径及与之相关的关键金属酶。
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Keasling, J. D. ACS Chem. Biol. 2008, 3 (1), 64.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

      Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U. Science 2008, 321 (5888), 572.

    11. [11]

      Hiromoto, T.; Warkentin, E.; Moll, J.; Ermler, U.; Shima, S. Angew. Chem. Int. Ed. 2009, 48 (35), 6457.

    12. [12]

      Corr, M. J.; Murphy, J. A. Chem. Soc. Rev. 2011, 40 (5), 2279.

    13. [13]

      Shima, S.; Chen, D.; Xu, T.; Wodrich, M. D.; Fujishiro, T.; Schultz, K. M.; Kahnt, J.; Ataka, K.; Hu, X. Nat. Chem. 2015, 7 (12), 995.

    14. [14]

      Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure (London) 1999, 7 (1), 13.

    15. [15]

      Mulder, D. W.; Shepard, E. M.; Meuser, J. E.; Joshi, N.; King, P. W.; Posewitz, M. C.; Broderick, J. B.; Peters, J. W. Structure. 2011, 19 (8), 1038.

    16. [16]

      Senger, M.; Eichmann, V.; Laun, K.; Duan, J.; Wittkamp, F.; Knör, G.; Apfel, U.; Happe, T.; Winkler, M.; Heberle, J.; et al. J. Am. Chem. Soc. 2019, 141 (43), 17394.

    17. [17]

      Volbeda, A.; Garcin, E.; Piras, C.; de Lacey, A. L.; Fernandez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 1996, 118 (51), 12989.

    18. [18]

      Mcdowall, J. S.; Murphy, B. J.; Haumann, M.; Palmer, T.; Armstrong, F. A.; Sargent, F. Proc. Natl. Acad. Sci. USA 2014, 111 (38), E3948.

    19. [19]

      Mcdowall, J. S.; Hjersing, M. C.; Palmer, T.; Sargent, F. FEBS Lett. 2015, 589 (20PartB), 3141.

    20. [20]

      Cestellos-Blanco, S.; Zhang, H.; Kim, J. M.; Shen, Y.; Yang, P. Nat. Catal. 2020, 3 (3), 245.

    21. [21]

      Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37.

    22. [22]

      Honda, Y.; Hagiwara, H.; Ida, S.; Ishihara, T. Angew. Chem. Int. Ed. 2016, 55 (28), 8045.

    23. [23]

      Xiong, W.; Zhao, X.; Zhu, G.; Shao, C.; Li, Y.; Ma, W.; Xu, X.; Tang, R. Angew. Chem. Int. Ed. 2015, 54 (41), 11961.

    24. [24]

      Wei, W.; Sun, P.; Li, Z.; Song, K.; Su, W.; Wang, B.; Liu, Y.; Zhao, J. Sci. Adv. 2018, 4 (2), 9253.

    25. [25]

      Chen, J.; Li, J.; Li, Q.; Wang, S.; Wang, L.; Liu, H.; Fan, C. Energy Environ. Sci. 2020, 13 (7), 2064.

    26. [26]

      Sokol, K. P.; Robinson, W. E.; Warnan, J.; Kornienko, N.; Nowaczyk, M. M.; Ruff, A.; Zhang, J. Z.; Reisner, E. Nat. Energy 2018, 3 (11), 944.

    27. [27]

      Zhang, L.; Morello, G.; Carr, S. B.; Armstrong, F. A. J. Am. Chem. Soc. 2020, 142 (29), 12699.

    28. [28]

      Pan, H. J.; Hu, X. Angew. Chem. Int. Ed. 2020, 59 (12), 4942.

    29. [29]

      Wang, X. Z.; Meng, S. L.; Xiao, H.; Feng, K.; Wang, Y.; Jian, J. X.; Li, X. B.; Tung, C. H.; Wu, L. Z. Angew. Chem. Int. Ed. 2020, 59 (42), 18400.

    30. [30]

      Evans, R. M.; Krahn, N.; Murphy, B. J.; Lee, H.; Armstrong, F. A.; Söll, D. Proc. Natl. Acad. Sci. USA 2021, 118 (13), e2100921118.

    31. [31]

    32. [32]

      Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 151 (2-3), 289.

    33. [33]

      Kohli, K.; Prajapati, R.; Sharma, B. Energies 2019, 12 (2), 223.

    34. [34]

      Valdehuesa, K. N. G.; Liu, H.; Ramos, K. R. M.; Park, S. J.; Nisola, G. M.; Lee, W.; Chung, W. Process Biochem. 2014, 49 (1), 25.

    35. [35]

      Mainguet, S. E.; Liao, J. C. Biotechnol. J. 2010, 5 (12), 1297.

    36. [36]

      Niu, W.; Molefe, M. N.; Frost, J.W. J. Am. Chem. Soc. 2003, 125 (43), 12998.

    37. [37]

      Yukawa, T.; Bamba, T.; Guirimand, G.; Matsuda, M.; Hasunuma, T.; Kondo, A. Biotechnol. Bioeng. 2021, 118 (1), 175.

    38. [38]

      Zhao, M.; Shi, D.; Lu, X.; Zong, H.; Zhuge, B. Bioresour. Technol. 2019, 282, 433.

    39. [39]

      Hanessian, S.; Ugolini, A.; Dubé, D.; Glamyan, A. Can. J. Chem. 1984, 62 (11), 2146.

    40. [40]

      Tandon, V. K.; Van Leusen, A. M.; Wynberg, H. J. Org. Chem. 1983, 48 (16), 2767.

    41. [41]

    42. [42]

    43. [43]

    44. [44]

    45. [45]

      Yim, H.; Haselbeck, R.; Niu, W.; Pujol-Baxley, C.; Burgard, A.; Boldt, J.; Khandurina, J.; Trawick, J. D.; Osterhout, R. E.; Stephen, R.; et al. Nat. Chem. Biol. 2011, 7 (7), 445.

    46. [46]

      Zhang, J.; Shreeve, J. N. M. J. Phys. Chem. C 2015, 119 (23), 12887.

    47. [47]

    48. [48]

      Zhang, J.; Shreeve, J. N. M. J. Am. Chem. Soc. 2014, 136 (11), 4437.

    49. [49]

    50. [50]

      Liu, Y.; Zhang, J.; Wang, K.; Li, J.; Zhang, Q.; Shreeve, J. N. M. Angew. Chem. Int. Ed. 2016, 55 (38), 11548.

    51. [51]

      Iamsaard, S.; Aßhoff, S. J.; Matt, B.; Kudernac, T.; Cornelissen, J. J.; Fletcher, S. P.; Katsonis, N. Nat. Chem. 2014, 6 (3), 229.

    52. [52]

      Francois, E. G.; Chavez, D. E.; Sandstrom, M. M. Prop. Exp. Pyrotech. 2010, 35, 529.

    53. [53]

      Wu, X.; Chu, Y.; Zheng, C.; Wang, T.; Lei, W.; Wang, F.; Xia, M. Chem. Heterocycl. Compd. 2015, 51 (8), 760.

    54. [54]

      Han, S.; Cheng, Y.; Liu, S.; Tao, C.; Wang, A.; Wei, W.; Yu, H.; Wei, Y. Angew. Chem. Int. Ed. 2021, 60 (12), 6382.

    55. [55]

      Gulyaev, D. A.; Klenov, M. S.; Churakov, A. M.; Strelenko, Y. A.; Fedyanin, I. V.; Lempert, D. B.; Kosareva, E. K.; Kon'Kova, T. S.;Matyushin, Y. N.; Tartakovsky, V. A. RSC Adv. 2021, 11 (39), 24013.

    56. [56]

      Chong, X.; Liu, C.; Huang, Y.; Huang, C.; Zhang, B. Natl. Sci. Rev. 2020, 7 (2), 285.

    57. [57]

      Sadatnabi, A.; Mohamadighader, N.; Nematollahi, D. Org. Lett. 2021, 23 (16), 6488.

    58. [58]

      Katsuyama, Y.; Matsuda, K. Curr. Opin. Chem. Biol. 2020, 59, 62.

    59. [59]

      Guo, Y.; Li, H.; Zhou, Z.; Mao, X.; Tang, Y.; Chen, X.; Jiang, X.; Liu, Y.; Jiang, H.; Li, Y. Org. Lett. 2015, 17 (24), 6114.

    60. [60]

      Zocher, G.; Winkler, R.; Hertweck, C.; Schulz, G. E. J. Mol. Biol. 2007, 373 (1), 65.

    61. [61]

      Lu, H.; Chanco, E.; Zhao, H. Tetrahedron 2012, 68 (37), 7651.

    62. [62]

      Guo, Y. Y.; Li, Z. H.; Xia, T. Y.; Du, Y. L.; Mao, X. M.; Li, Y. Q. Nat. Commun. 2019, 10 (1), 1.

    63. [63]

    64. [64]

      Brown, M. R.W.; Kornberg, A. Proc. Natl. Acad. Sci. USA 2004, 101 (46), 16085.

    65. [65]

      Kulaev, I. S.; Vagabov, V. M.; Kulakovskaya, T. V. The Biochemistry of Inorganic Polyphosphates; John Wiley & Sons:New Jersey, USA, 2004.

    66. [66]

      Moradali, M. F.; Rehm, B. Nat. Rev. Microbiol. 2020, 18 (4), 195.

    67. [67]

      Ahn, K.; Kornberg, A. J. Biol. Chem. 1990, 265 (20), 11734.

    68. [68]

      Zhang, H.; Ishige, K.; Kornberg, A. Proc. Natl. Acad. Sci. USA 2003, 99 (26), 16678.

    69. [69]

      Ault-Riché, D.; Fraley, C. D.; Tzeng, C. M.; Kornberg, A. J. Bacteriol. 1998, 180 (7), 1841.

    70. [70]

      Rao, N. N.; Liu, S.; Kornberg, A. J. Bacteriol. 1998, 180 (8), 2186.

    71. [71]

      Zhu, Y.; Huang, W.; Lee, S. S. K.; Xu, W. EMBO Rep. 2005, 6 (7), 681.

    72. [72]

      Akbari, A.; Wang, Z.; He, P.; Wang, D.; Lee, J.; Han, I. L.; Li, G.; Gu, A. Z. Microb. Biotechnol. 2021, 14 (1), 82.

    73. [73]

      Wang, X.; Wang, X.; Hui, K.; Wei, W.; Zhang, W.; Miao, A.; Xiao, L.; Yang, L. Environ. Sci. Technol. 2018, 52 (1), 214.

    74. [74]

      Christ, J. J.; Blank, L. M. FEMS Yeast. Res. 2019, 19 (3), foz011.

    75. [75]

      Christ, J. J.; Smith, S. A.; Willbold, S.; Morrissey, J. H.; Blank, L. M. Biotechnol. Bioeng. 2020, 117 (7), 2089.

    76. [76]

      Kulakovskaya, T.V.; Andreeva, N. A.; Ledova, L. A.; Ryazanova, L. P.; Trilisenko, L.V.; Eldarov, M. A. Biochem. Moscow 2021, 86, S96.

    77. [77]

      Rao, N. N.; Gomez-Garcia, M. R.; Kornberg, A. Annu. Rev. Biochem. 2009, 78, 605.

    78. [78]

      Hothorn, M.; Neumann, H.; Lenherr, E. D.; Wehner, M.; Rybin, V.; Hassa, P. O.; Uttenweiler, A.; Reinhardt, M.; Schmidt, A.; Seiler, J.; et al. Science 2009, 324 (5926), 513.

    79. [79]

      Wang, X.; Shi, C.; Mo, J.; Xu, Y.; Wei, W.; Zhao, J. Angew. Chem. Int. Ed. 2020, 59 (7), 2679.

    80. [80]

      Wu, A. T. H.; Aoki, T.; Sakoda, M.; Ohta, S.; Ichimura, S.; Ito, T.; Ushida, T.; Furukawa, K. S. Biomacromolecules 2015, 16 (1), 166.

    81. [81]

      Chen, D.; Zhou, X.; Chang, L.; Wang, Y.; Li, W.; Qin, J. Biomacromolecules 2021, 22 (5), 2272.

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    5. [5]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    20. [20]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

Metrics
  • PDF Downloads(12)
  • Abstract views(1162)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return