Citation: Hui Zhang,  Aihua Qi,  Dan Li,  Rongxing Li. 光学活性和手性光谱的溯源和发展[J]. University Chemistry, ;2022, 37(1): 210500. doi: 10.3866/PKU.DXHX202105009 shu

光学活性和手性光谱的溯源和发展

  • 概述了19世纪以来光学活性和手性光谱的发现和发展,着重对旋光色散(ORD)、电子圆二色(ECD)和振动圆二色(VCD)光谱的发展背景和基本原理作出介绍。其中特别提及华人科学家徐光宪和徐云洁在手性光谱发展历程中的杰出贡献。
  • 加载中
    1. [1]

      Berova, N.; Polavarapu, P. L.; Nakanishi, K.; Woody, R. W. Comprehensive Chiroptical Spectroscopy, John Wiley & Sons, Ltd.:Chichester, UK, 2012.

    2. [2]

    3. [3]

      Laur, P. A. Historical Overview. In Comprehensive Chiroptical Spectroscopy; Berova, N.; Polavarapu, P. L.; Nakanishi, K.; Woody, R. W. Eds.; John Wiley & Sons, Ltd.:Chichester, UK, 2012; pp. 3-35.

    4. [4]

      Mason, S. F. Molecular Optical Activity and Chiral Discriminations. Cambridge University Press:Cambridge, UK, 1982.

    5. [5]

      Nafie, L. A. Vibrational Optical Activity:Principles and Applications. John Wiley & Sons, Ltd.:Chichester, UK, 2011; pp. 1-34.

    6. [6]

      Barron, L. D. Molecular Light Scattering and Optical Activity, 2nd ed.; Cambridge University Press:Cambridge, UK, 2004.

    7. [7]

      Crabbé, P. Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry. Holden-Day, Inc.:San Francisco, CA, USA, 1965.

    8. [8]

    9. [9]

      Pasteur, L. Ann. Chim. Phys. 1850, 28 (3), 56.

    10. [10]

      Tobe, Y. Mendeleev Commun. 2003, 13 (3), 93.

    11. [11]

      Ramsay, O. B. Stereochemistry. Heyden & Son Ltd.:London, UK, 1981.

    12. [12]

      Arndtsen, A. Ann. Phys. 1858, 181 (10), 312.

    13. [13]

      Landolt, H. Liebigs Ann. Chem. 1877, 189 (3), 241.

    14. [14]

      Landolt, H. Das Optische Drehungsvermögen Organischer Substanzen und die Praktischen Anwendungen Desselben. Vieweg und Sohn:Braunschweig, Germany, 1879.

    15. [15]

      Haidinger, W. Ann. Phys. 1847, 146 (4), 531.

    16. [16]

      Dove, H. W. Ann. Phys. 1860, 186 (6), 279.

    17. [17]

      Perucca, E. Ann. Phys. 1914, 350 (19), 463.

    18. [18]

      Perucca, E. Nuovo Cimento 1919, 18 (1), 112.

    19. [19]

      Burkov, V. I.; Egorysheva, A. V.; Kargin, Y. F.; Mar'in A A.; Fedotov, E. V. Crystallogr. Rep. 2005, 50 (3), 461.

    20. [20]

      King, N. Amethyst.[2021-03-20]. https://www.mindat.org/min-198.html

    21. [21]

      Bolano, A. Amethyst:Characteristics and Properties.[2018-08-17]. https://sciencetrends.com/amethyst-characteristics-and-properties/

    22. [22]

      Cotton, A. C. R. Hebd. Seances Acad. Sci. (Paris). 1895, 120, 989.

    23. [23]

      Cotton, A. C. R. Hebd. Seances Acad. Sci. (Paris). 1895, 120, 1044.

    24. [24]

      Cotton, A. J. Phys. Théor. Appl. 1896, 5 (1), 237.

    25. [25]

      Lifschitz, J. Rec. Trav. Chim. Pays-Bas 1922, 41, 627.

    26. [26]

      Kahr, B.; Bing, Y.; Kaminsky, W.; Viterbo, D. Angew. Chem. Int. Ed. 2009, 48 (21), 3744.

    27. [27]

      Bing, Y.; Selassi, D.; Paradise, R. H.; Christine, I.; Kramer, N.; Sadilek, M.; Kaminsky, W.; Kahr, B. J. Am. Chem. Soc. 2010, 132 (21), 7454.

    28. [28]

      Rosenfeld, L. Z. Phys. 1929, 52 (3-4), 161.

    29. [29]

      Kuhn, W. Z. Phys. Chem. 1936, B31 (1), 23.

    30. [30]

      Tschugaeff, L. Trans. Faraday Soc. 1914, 10 (8), 70.

    31. [31]

      Nyholm, R. S. Phys. Eng. Sci. 1967, 297 (1448), 2.

    32. [32]

      Ingold, C. Proc. Roy. Soc. A 1967, 297 (1448), 171.

    33. [33]

      Polavarapu, P. L. Chirality 2002, 14 (10), 768.

    34. [34]

      McCaffery, A. J.; Mason, S. F. Mol. Phys. 1963, 6 (4), 359.

    35. [35]

      Mason, S. F. Proc. Roy. Soc. A 1967, 297 (1448), 3.

    36. [36]

      Beckmann, C. O.; Cohen, K. J. Chem. Phys. 1936, 4 (12), 784.

    37. [37]

      Charney, E. The Molecular Basis of Optical Activity, Optical Rotatory Dispersion and Circular Dichroism. John Wiley & Sons:New York, NY, USA, 1979.

    38. [38]

    39. [39]

    40. [40]

    41. [41]

    42. [42]

    43. [43]

    44. [44]

      Nafie, L. A. Infrared vibrational optical activity:measurement and instrumentation. In Comprehensive Chiroptical Spectroscopy; Berova, N., Polavarapu, P. L., Nakanishi, K., Woody, R. W., Eds.; John Wiley & Sons, Ltd.:Chichester, UK, 2012; pp. 115-146.

    45. [45]

    46. [46]

      Bijvoet, J. M.; Peerdeman, A. F.; van Bommel, A. J. Nature 1951, 168 (4268), 271.

    47. [47]

      Mitchell, S. The Cotton Effect and Related Phenomena. G. Bell & Sons, Ltd.:London, UK, 1933.

    48. [48]

      Kuhn, W.; Szabo, A. Z. Phys. Chem. 1932, B15, 59.

    49. [49]

      Mason, S. F. Quart. Rev. 1963, 17 (1), 206.

    50. [50]

    51. [51]

      Taniguchi, T.; Monde, K. J. Am. Chem. Soc. 2012, 134 (8), 3695.

    52. [52]

      Taniguchi, T.; Manai, D.; Shibata, M.; Itabashi, Y.; Monde, K. J. Am. Chem. Soc. 2015, 137 (38), 12191.

    53. [53]

      Covington, C. L.; Nicu, V. P.; Polavarapu, P. L. J. Phys. Chem. A 2015, 119 (42), 10589.

    54. [54]

    55. [55]

      Nafie, L. A. Vibrational Optical Activity:Principles and Applications. John Wiley & Sons, Ltd.:Chichester, UK, 2011; pp. 1-34.

    56. [56]

      Sadlej, J. S.; Dobrowolski, J. C.; Rode, J. E. Chem. Soc. Rev. 2010, 39 (5), 1478.

    57. [57]

      Kuhn, W. Trans. Faraday Soc. 1930, 26, 293.

    58. [58]

      Holzwarth, G.; Chabay, I. J. Chem. Phys. 1972, 57 (4), 1632.

    59. [59]

      Schellman, J. A. J. Chem. Phys. 1973, 58 (7), 2882.

    60. [60]

      Holzwarth, G.; Hsu, E. C.; Mosher, H. S.; Faulkner, T. R.; Moscowitz, A. J. Am. Chem. Soc. 1974, 96 (1), 251.

    61. [61]

      Stephens, P. J.; Devlin, F. J.; Pan, J.-J. Chirality 2008, 20 (5), 243.

    62. [62]

      Nafie, L. A.; Cheng, J. C.; Stephens, P. J. J. Am. Chem. Soc. 1975, 97 (13), 3842.

    63. [63]

      Nafie, L. A.; Keiderling, T. A.; Stephens, P. J. J. Am. Chem. Soc. 1976, 98 (10), 2715.

    64. [64]

      Devlin, F. J.; Stephens, P. J.; Besse, P. Tetrahedron:Asymmetry 2005, 16 (8), 1557.

    65. [65]

      Buckingham, A. D.; Fowler, P. W.; Galwas, P. A. Chem. Phys. 1987, 112 (1), 1.

    66. [66]

      Stephens, P. J. J. Phys. Chem. 2002, 89 (5), 748.

    67. [67]

      Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Stephens, P. J. Chem. Phys. Lett. 1996, 252 (2), 211.

    68. [68]

      Yang, G.; Xu, Y.; Hou, J.-B.; Zhang, H.; Zhao, Y.-F. Chem. Eur. J. 2010, 16 (8), 2518.

    69. [69]

      Yang, G.; Xu, Y.; Hou, J.-B.; Zhang, H.; Zhao, Y.-F. Dalton Trans. 2010, 39 (30), 6953.

    70. [70]

      Zhang, Y.; Poopari, M. R.; Cai, X.; Savin, A.; Dezhahang, Z.; Cheramy, J.; Xu, Y. J. Nat. Prod. 2016, 79 (4), 1012.

    71. [71]

      Bader, R. F. W. Acc. Chem. Res. 1985, 18 (1), 9.

    72. [72]

      Losada, M.; Nguyen, P.; Xu, Y. J. Phys. Chem. A 2008, 112 (25), 5621.

    73. [73]

      Thomas, J.; Sukhorukov, O.; Jäger, W.; Xu, Y. Angew. Chem. Int. Ed. 2014, 53 (4), 1156.

    74. [74]

      Perera, A. S.; Thomas, J.; Poopari, M. R.; Xu, Y. Front. Chem. 2016, 4, 1.

    75. [75]

      Merten, C.; Xu, Y. Angew. Chem. Int. Ed. 2013, 52 (7), 2073.

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    10. [10]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    17. [17]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    18. [18]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    19. [19]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(24)
  • Abstract views(1025)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return