Citation: Lin Guo. 淬灭(剂)还是猝灭(剂)?[J]. University Chemistry, ;2022, 37(1): 210308. doi: 10.3866/PKU.DXHX202103081 shu

淬灭(剂)还是猝灭(剂)?

  • 现有高分子化学及光化学中文文献中,英文quench(或quenching)、quencher(或quenching agent)一词分别被对应为“淬灭”和“猝灭”、“淬灭剂”和“猝灭剂”,这给相关课程教学以及相关领域学术交流带来了困扰。为此,我们分别从语言学和化学的角度,对相关中英文词汇的词义进行了分析、考证。结果表明,汉语中,与quench(或quenching)对应的应为“淬灭”,与quencher(或quenching agent)对应的应为“淬灭剂”。建议全国科学技术名词审定委员会对相关规范及定名尽快予以订正,相关工具书、教科书及专著对相关名词予以统一,相关出版社、编辑部对此问题予以重视。
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

      Alger, M. Polymer Science Dictionary, 2nd ed.; Chapman & Hall:London, UK, 1997.

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

    38. [38]

    39. [39]

    40. [40]

    41. [41]

    42. [42]

    43. [43]

      Procter, P. Longman Dictionary of Contemporary English; Longman Group Ltd.:London, UK, 1978; p. 904.

    44. [44]

      American Heritage Dictionary of the English Language, 4th ed.; Houghton Mifflin Company, New York, USA, 2006; p. 1435.

    45. [45]

      Merriam-Webster's Advanced Learner's English Dictionary; Merriam-Webster. Incorporated, Springfield, USA, 2008; p. 1323.

    46. [46]

      Dictionary by Merriam-Webster[2021-03-29]. https://www.merriam-webster.com/dictionary/quench

    47. [47]

      Cambridge Advanced Learner's Dictionary, 3rd ed.; Cambridge University Press:Cambridge, UK, 2008; p. 1164.

    48. [48]

    49. [49]

    50. [50]

    51. [51]

    52. [52]

    53. [53]

    54. [54]

    55. [55]

      Braun, D.; Cherdron, H.; Rehahn, M.; Ritter, H.; Voit, B. Polymer Synthesis:Theory and Practice (Fundamentals, Methods, Experiments), 4th ed.; Springer-Verlag Berlin Heidelberg:New York, USA, 2005; pp. 172, 254, 358.

    56. [56]

      Matyjaszewski, K.; Davis, P. T. Handbook of Radical Polymerization; John Wiley & Sons, Inc.:Hoboken, USA, 2002; pp. 125, 245, 428, 545, 585, 596, 808.

    57. [57]

      Odian, G. Principles of Polymerization, 4th ed.; John Wiley & Sons, Inc.:Hoboken, USA, 2004; pp. 74, 223, 224, 388, 423, 663.

    58. [58]

      Hsieh, H. L.; Quirk, R. P. Anionic Polymerization:Principles and Applications; Marcel Dekker, Inc.:New York, USA, 1996; pp. 273, 355, 379, 668, 669.

    59. [59]

    60. [60]

      Adams, H.; Baker, M.; Hodson, H.; Morris, J. M. Tetrahedron Lett. 2017, 58 (17), 1695.

    61. [61]

      Guild, J.; Morris, J. M.; Robertson, C. C.; Speed, W. H. A. Tetrahedron Lett. 2019, 60 (39), 151079.

    62. [62]

    63. [63]

    64. [64]

      Rudin, A. The Elements of Polymer Science and Engineering, 2nd ed.; Acdemic Press:San Diego, USA, 1999; pp. 43, 221, 347, 375, 384, 387.

    65. [65]

      Moad, G.; Solomon, H. D. The Chemistry of Radical Polymerization, 2nd ed.; Elsevier Ltd.:Oxford, UK, 2006; pp. 14, 100, 264.

    66. [66]

      Davis, J. F. Polymer Chemistry:A Practical Approach (The Practical Approach in Chemistry Series); Oxford University Press:Oxford, UK, 2004; pp. 68, 69, 72, 74, 77, 79, 154.

    67. [67]

    68. [68]

    69. [69]

    70. [70]

    71. [71]

  • 加载中
    1. [1]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    2. [2]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    5. [5]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    6. [6]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    7. [7]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    8. [8]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    9. [9]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    14. [14]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    15. [15]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    16. [16]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(22)
  • Abstract views(2169)
  • HTML views(667)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return