Citation: Xiaozheng Xie,  Yan Xia. 电子鼻的核心——气体传感器的研究与应用[J]. University Chemistry, ;2021, 36(9): 201204. doi: 10.3866/PKU.DXHX202012045 shu

电子鼻的核心——气体传感器的研究与应用

  • 电子鼻是模拟动物嗅觉器官开发的一种高科技产品,气体传感器作为电子鼻的核心元件,通过与待测气体反应将组成和浓度等信息转化为电信号输出,从而实现对环境中有害气体的快速、灵敏、实时检测。本文介绍了半导体型、电化学型和红外气体传感器的基本原理和应用领域,重点综述了近几年气体传感器的研究进展,并对其未来发展进行了展望。
  • 加载中
    1. [1]

      Mirzaei, A.; Leonardi, S. G.; Neri, G. Ceram. Int. 2016, 42(14), 15119.

    2. [2]

    3. [3]

      Wilkens, W. F.; Hartman, J. D. Ann. N. Y. Acad. Sci. 1964, 116(A2), 608.

    4. [4]

      Persaud, K.; Dodd, G. Nature 1982, 299(5881), 352.

    5. [5]

      Tetsuro, S. A.; Kiyoshi, F.; Masanori, N. Anal. Chem. 1962, 34(11), 1502.

    6. [6]

    7. [7]

    8. [8]

      Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H. Appl. Phys. Lett. 2004, 84(18), 3654.

    9. [9]

      Chen, Y.; Xu, P. C.; Xu, T.; Zheng, D.; Li, X. X. Sens. Actuator B-Chem. 2017, 240, 264.

    10. [10]

      Garzella, C.; Comini, E.; Tempesti, E. Sens. Actuator B-Chem. 2000, 68(1-3), 189.

    11. [11]

      Wang, Y. L.; Jiang, X. C.; Xia, Y. N. J. Am. Chem. Soc. 2003, 125(52), 16176.

    12. [12]

      Lu, X. F.; Yu, Q. Q.; Wang, K.; Shi, L. C.; Liu, X.; Qiu, A. G.; Wang, L.; Cui, D. L. Cryst. Res. Technol. 2010, 45(5), 557.

    13. [13]

      Yang, T. Y.; Du, L. Y.; Zhai, C. B.; Li, Z. F.; Zhao, Q.; Luo, Y.; Xing, D. J.; Zhang, M. Z. J. Alloys Compd. 2017, 718, 396.

    14. [14]

      Cho, Y. H.; Kang, Y. C.; Lee, J. H. Sens. Actuator B-Chem. 2013, 176, 971.

    15. [15]

      Cho, Y. H.; Ko, Y. N.; Kang, Y. C.; Kim, I. D.; Lee, J. H. Sens. Actuator B-Chem. 2014, 195, 189.

    16. [16]

      Pandeeswari, R.; Jeyaprakash, B. G. Biosens. Bioelectron. 2014, 53, 182.

    17. [17]

      Shen, S. K.; Zhang, X. F.; Cheng, X. L.; Xu, Y. M.; Gao, S.; Zhao, H.; Zhou, X.; Huo, L. H. ACS Appl. Nano Mater. 2019, 2, 8016.

    18. [18]

      Yamazoe, N. Sens. Actuator B-Chem. 1991, 5(1-4), 7.

    19. [19]

      Dang, T. V.; Hoa, N. D.; Duy, N. V.; Hieu, N. V. ACS Appl. Mater. Interfaces 2016, 8(7), 4828.

    20. [20]

      Chu, X. F.; Wang, J. L.; Bai, L. S. Mater. Sci. Eng. B 2018, 228, 45.

    21. [21]

      Rothschild, A.; Komem, Y. J. Appl. Phys. 2004, 95(11), 6374.

    22. [22]

      Gong, H.; Hu, J. Q.; Wang, J. H.; Ong, C. H.; Zhu, F. R. Sens. Actuator B-Chem. 2006, 115(1), 247.

    23. [23]

      Li, C.; Feng, C. H.; Qu, F. D.; Liu, J.; Zhu, L. H.; Lin, Y.; Wang, Y.; Li, F.; Zhou, J. R.; Ruan, S. P. Sens. Actuator B-Chem. 2015, 207, 90.

    24. [24]

      Comini, E.; Yubao, L.; Brando, Y.; Sberveglieri, G. Chem. Phys. Lett. 2005, 407(4-6), 368.

    25. [25]

      Chu, X. F.; Liang, S. M.; Chen, T. Y.; Zhang, Q. F. Mater. Chem. Phys. 2010, 123, 396.

    26. [26]

      Meng, D.; Si, J. P.; Wang, M. Y.; Wang, G. S.; Shen, Y. B.; San, X. G.; Meng, F. L. Vacuum 2020, 171.

    27. [27]

      Li, Z. Q.; Song, P.; Yang, Z. X.; Wang, Q. Ceram. Int. 2018, 44, 3364.

    28. [28]

      Zhang, F. D.; Dong, X.; Cheng, X. L.; Xu, Y. M.; Zhang, X. F.; Huo, L. H. ACS Appl. Mater. Interfaces 2019, 11, 11755.

    29. [29]

      Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Adv. Mater. 2016, 28(5), 795.

    30. [30]

      Nikolic, M. V.; Milovanovic, V.; Vasiljevic, Z. Z.; Stamenkovic, Z. Sensors 2020, 20(22), 6694.

    31. [31]

      Wang, Q.; Huang, J. Y.; Zhou, J. X.; Liu, Z. H.; Geng, Y. F.; Liang, Z. Q.; Du, Y.; Tian, X. Q. Sens. Actuator B-Chem. 2017, 275, 306.

    32. [32]

      Wang, Y. R.; Liu, B.; Xiao, S. H.; Wang, X. H.; Sun, L. M.; Li, H.; Xie, W. Y.; Li, Q. H.; Zhang, Q.; Wang, T. H. ACS Appl. Mater. Interfaces 2016, 8(15), 9674.

    33. [33]

      Kumar, M.; Bhati, V. S.; Ranwa, S.; Singh, J.; Kumar, M. Sci. Rep. 2017, 7, 236.

    34. [34]

      Matindoust, S.; Baghaei-Nejad, M.; Zou, Z.; Zheng, L. R. Sens. Rev. 2016, 36, 169.

    35. [35]

      Qiu, S. S.; Wang, J. Food Chem. 2017, 230, 208.

    36. [36]

      Tian, X. J.; Wang, J.; Cui, S. Q. J. Food Eng. 2013, 119(4), 744.

    37. [37]

      Wan, H.; Yin, H. Y.; Lin, L. Sens. Actuator B-Chem. 2018, 255, 638.

    38. [38]

    39. [39]

      Silvester, D. S. Analyst 2011, 136(23), 4871.

    40. [40]

    41. [41]

      Rehman, A.; Zeng, X. Q. RSC Adv. 2015, 5(72), 58371.

    42. [42]

      Kuberský, P.; Syrový, T.; Hamáček, A.; Nešpůrek, S.; Syrová, L. Sens. Actuator B-Chem. 2015, 209, 1084.

    43. [43]

      Ng, S. R.; Guo, C. X.; Li, C. M. Electroanalysis 2011, 23(2), 442.

    44. [44]

      Rassaei, L.; Marken, F.; Sillanpää, M.; Amiri, M.; Cirtiu, C. M.; Sillanpää, M. TrAC, Trends Anal. Chem. 2011, 30(11), 1704.

    45. [45]

      Maduraiveeran, G.; Ramaraj, R. Electrochem. Commun. 2007, 9(8), 2051.

    46. [46]

      Dinh, T. V.; Choi, I. Y.; Son, Y. S.; Kim, J. C. Sens. Actuator B-Chem. 2016, 231, 529.

    47. [47]

      Wang, X.; Rödjegård, H.; Oelmann, B.; Martin, H.; Larsson, B. Procedia Eng. 2010, 5, 1208.

    48. [48]

      Park, J. S.; Yi, S. H. Procedia Eng. 2010, 5, 1248.

    49. [49]

      Petruci, J. F. D. S.; Wilk, A.; Cardoso, A. A.; Mizaikoff, B. Anal. Chem. 2015, 87(19), 9605.

    50. [50]

    51. [51]

    52. [52]

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    17. [17]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    18. [18]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    19. [19]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(15)
  • Abstract views(981)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return