Citation: Zhipeng A. Wang,  Xuan Zhang,  Ziliang Che,  Zhenxiong Jiang,  Xinyu Ma. Discussion on the Application of Novel Protein Post-Translational Modification Discovered by Mass Spectrometry in Chemistry and Biology Education[J]. University Chemistry, ;2021, 36(6): 200607. doi: 10.3866/PKU.DXHX202006075 shu

Discussion on the Application of Novel Protein Post-Translational Modification Discovered by Mass Spectrometry in Chemistry and Biology Education

  • Rapid development of mass spectrum technology (MS) brings about its wide applications in many fields such as chemistry, material science and life sciences, and its application in biochemistry and chemical biology have been greatly expanding the knowledge of novel protein post-translation modification (PTM). This manuscript starts from the basic principles of mass spectrum and later elaborates the application of MS in discovering lysine post-translation modifications over histones as model proteins, showing a path incorporating fundamental organic chemistry and biochemistry knowledge into cutting-edge researches. By analyzing roles of mass spectrum throughout post-translation modification studies under different research logistics, this manuscript was aimed to help establishing a way of thinking that associates fundamental chemistry and biology education with practical applications for students.
  • 加载中
    1. [1]

      Arnaudo, A. M.; Molden, R. C.; Garcia, B. A. Crit. Rev. Biochem. Mol. Biol. 2011, 46 (4), 284.

    2. [2]

      Strahl, B. D.; Allis, C. D. Nature 2000, 403 (6765), 41.

    3. [3]

      Filippakopoulos, P.; Knapp, S. Nat. Rev. Drug Discov. 2014, 13 (5), 337.

    4. [4]

    5. [5]

    6. [6]

      Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F. Science 1989, 246 (4926), 64.

    7. [7]

      Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Rapid Commun. Mass Spectrom 1988, 2, 151.

    8. [8]

      Steen, H.; Mann, M. Nat. Rev. Mol. Cell Biol. 2004, 5 (9), 699.

    9. [9]

    10. [10]

      Chen, Y.; Chen, W.; Cobb, M. H.; Zhao, Y. Proc. Natl. Acad. Sci. USA 2009, 106 (3), 761.

    11. [11]

      Allfrey, V. G.; Faulkner, R.; Mirsky, A. E. Proc. Natl. Acad. Sci. USA 1964, 51 (5), 786.

    12. [12]

      Gershey, E. L.; Vidali, G.; Allfrey, V. G. J. Biol. Chem. 1968, 243 (19), 5018.

    13. [13]

      Huang, H.; Lin, S.; Garcia, B. A.; Zhao, Y. Chem. Rev. 2015, 115 (6), 2376.

    14. [14]

      Chen, Y.; Sprung, R.; Tang, Y.; Ball, H.; Sangras, B.; Kim, S. C.; Falck, J. R.; Peng, J.; Gu, W.; Zhao, Y. Mol. Cell Proteomics 2007, 6 (5), 812.

    15. [15]

      Xie, Z.; Dai, J.; Dai, L.; Tan, M.; Cheng, Z.; Wu, Y.; Boeke, J. D.; Zhao, Y. Mol. Cell Proteomics 2012, 11 (5), 100.

    16. [16]

      Tan, M.; Peng, C.; Anderson, K. A.; Chhoy, P.; Xie, Z.; Dai, L.; Park, J.; Chen, Y.; Huang, H.; Zhang, Y.; et al. Cell Metab. 2014, 19 (4), 605.

    17. [17]

    18. [18]

      Huang, H.; Zhang, D.; Wang, Y.; Perez-Neut, M.; Han, Z.; Zheng, Y. G.; Hao, Q.; Zhao, Y. Nat. Commun. 2018, 9 (1), 3374.

    19. [19]

      Wisniewski, J. R.; Zougman, A.; Mann, M. Nucleic Acids Res. 2008, 36 (2), 570.

    20. [20]

      Jiang, T.; Zhou, X.; Taghizadeh, K.; Dong, M.; Dedon, P. C. Proc. Natl. Acad. Sci. US 2007, 104 (1), 60.

    21. [21]

      Sabari, B. R.; Zhang, D.; Allis, C. D.; Zhao, Y. Nat. Rev. Mol. Cell Biol. 2017, 18 (2), 90.

    22. [22]

      Dai, L.; Peng, C.; Montellier, E.; Lu, Z.; Chen, Y.; Ishii, H.; Debernardi, A.; Buchou, T.; Rousseaux, S.; Jin, F.; et al. Nat. Chem. Biol. 2014, 10 (5), 365.

    23. [23]

      Xie, Z.; Zhang, D.; Chung, D.; Tang, Z.; Huang, H.; Dai, L.; Qi, S.; Li, J.; Colak, G.; Chen, Y.; et al. Mol. Cell 2016, 62 (2), 194.

    24. [24]

      Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J. S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; et al. Cell 2011, 146 (6), 1016.

    25. [25]

      Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Nature 2019, 574 (7779), 575.

    26. [26]

      Galligan, J. J.; Rose, K. L.; Beavers, W. N.; Hill, S.; Tallman, K. A.; Tansey, W. P.; Marnett, L. J. J. Am Chem. Soc. 2014, 136 (34), 11864.

    27. [27]

      Castro, J. P.; Jung, T.; Grune, T.; Siems, W. Free Radic Biol. Med. 2017, 111, 309.

    28. [28]

      Sabari, B. R.; Zhang, D.; Allis, C. D.; Zhao, Y. Nat. Rev. Mol. Cell Biol. 2017, 18 (2), 90.

    29. [29]

      Huang, J. X.; Lee, G.; Cavanaugh, K. E.; Chang, J. W.; Gardel, M. L.; Moellering, R. E. Nat. Methods 2019, 16 (9), 894.

    30. [30]

      Moellering, R. E.; Cravatt, B. F. Science 2013, 341 (6145), 549.

    31. [31]

      Wang, Z. P.; Wang, Y. H.; Chu, G. C.; Shi, J.; Li, Y. M. Curr. Org. Synth. 2015, 12 (2), 150.

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

      Wang, Z. A.; Millard, C. J.; Lin, C.-L.; Gurnett, J. E.; Wu, M.; Lee, K.; Fairall, L.; Schwabe, J. W. R.; Cole, P. A. elife 2020, 9, e57663.

    38. [38]

  • 加载中
    1. [1]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    6. [6]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    14. [14]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    15. [15]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    16. [16]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    17. [17]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    19. [19]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    20. [20]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

Metrics
  • PDF Downloads(3)
  • Abstract views(656)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return