Citation: Mingyu Yang. Progress in Synthesis of Pyrrolidine Derivatives by Hofmann-Löffler-Freytag Type Reactions[J]. University Chemistry, ;2021, 36(6): 200603. doi: 10.3866/PKU.DXHX202006030 shu

Progress in Synthesis of Pyrrolidine Derivatives by Hofmann-Löffler-Freytag Type Reactions

  • Nitrogen-containing heterocycles exist widely in natural products, pharmaceuticals and optical materials. These molecules often exhibit high levels of biological and optical activities. Especially, the pyrrolidine derivatives are privileged structural units existed in natural products and pharmaceuticals. Therefore, the development of efficient methods to construct this ubiquitous structure unit is highly desirable. This paper introduces the development of Hofmann-Löffler-Freytag (HLF) reaction in synthesis of pyrrolidine derivatives. The major contents are including two aspects:1) Halogen-mediated HLF reactions; 2) Non halogen-mediated HLF reactions.
  • 加载中
    1. [1]

      Jeffrey, J. L.; Sarpong, R. Chem. Sci. 2013, 4, 4092.

    2. [2]

      Yuan, J.; Liu, C.; Lei, A. Chem. Commun. 2015, 51, 1394.

    3. [3]

      Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117 (13), 9247.

    4. [4]

      Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.

    5. [5]

      Wei, J.; Han, B.; Guo, Q.; Shi, X.; Wang, W.; Wei, N. Angew. Chem. Int. Ed. 2010, 49, 8209.

    6. [6]

      Steele, J. C. P.; Veitch, N. C.; Kite, G. C.; Simmonds, S. J. M.; Warhurst, D. C. J. Nat. Prod. 2002, 65, 85.

    7. [7]

      Nicolaou, K. C.; Dalby, S. M.; Majumder, U. J. Am. Chem. Soc. 2008, 130, 14942.

    8. [8]

      Türkmen, Y. E.; Gravel, M.; Rawal, V. H. J. Org. Chem. 2016, 81, 10454.

    9. [9]

      Mori, M.; Kuroda, S.; Zhang, C.-S.; Sato, Y. J. Org. Chem. 1997, 62, 3263.

    10. [10]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1879, 12, 984.

    11. [11]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1881, 14, 2725.

    12. [12]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1883, 16, 558.

    13. [13]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1885, 18, 5.

    14. [14]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1885, 18, 109.

    15. [15]

      Löffler, K. Ber. Dtsch. Chem. Ges. 1910, 43, 2035.

    16. [16]

      Löffler, K.; Freytag, C. Ber. Dtsch. Chem. Ges. 1909, 42, 3427.

    17. [17]

      Löffler, K.; Kaim, H. Ber. Dtsch. Chem. Ges. 1909, 42, 94.

    18. [18]

      Löffler, K.; Kober, S. Ber. Dtsch. Chem. Ges. 1909, 42, 3431.

    19. [19]

      Wolff, M. E. Chem. Rev. 1963, 63, 55.

    20. [20]

      Betancor, C.; Concepcion, J. I.; Hernandez, R.; Salazar. J. A.; Suárez, E. J. Org. Chem. 1983, 48, 4430.

    21. [21]

      Carrau, R.; Hernández, R.; Suárez, E.; Betancor, C. J. Chem. Soc., Perkin Trans. 1 1987, 937.

    22. [22]

      Francisco, C. G.; Herrera, A. J.; Suárez, E. J. Org. Chem. 2003, 68, 1012.

    23. [23]

      Hernández, R.; Rivera, A.; Salazar, A.; Suárez, E. J. Chem. Soc. Chem. Commun. 1980, 958.

    24. [24]

      Fan, R.; Pu, D.; Wen, F.; Wu, J. J. Org. Chem. 2007, 72, 8994.

    25. [25]

      Paz, N. R.; Rodíguez-Sosa, D.; Valdés, H.; Marticorena, R.; Melián, D.; Copano, M. B.; González, C. C.; Herrera, A. J. Org. Lett. 2015, 17, 2370.

    26. [26]

      Martínez, C.; Muñiz, K. Angew. Chem. Int. Ed. 2015, 54, 8287.

    27. [27]

      Duhamel, T.; Stein, C. J.; Martínez, C. Reiher, M.; Muñiz, K. ACS Catal. 2018, 8, 3918.

    28. [28]

      Castillo, E. D.; Muñiz, K. Org. Lett. 2019, 21, 705.

    29. [29]

      Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894.

    30. [30]

      O'Broin, C. Q.; Fernández, P.; Martínez, C.; Muñiz, K. Org. Lett. 2016, 18, 436.

    31. [31]

      Bafaluy, D.; Muñoz-Molina, J. M.; Funes-Ardoiz, I.; Herold, S.; de Aguirre, A. J.; Zhang, H.; Maseras, F.; Belderrain, T.; Pérez, P. J.; Muñiz, K. Angew. Chem. Int. Ed., 2019, 58, 8912.

    32. [32]

      Wappes, E. A.; Fosu, S. C.; Chopko, T. C.; Nagib, D. A. Angew. Chem. Int. Ed. 2016, 55, 9974.

    33. [33]

      Becker, P.; Duhamel, T.; Martínez, C.; Muñiz, K. Angew. Chem. Int. Ed. 2018, 57, 5166.

    34. [34]

      Nikishin, G. I.; Troyansky, E. I.; Lazareva, M. I. Tetrahedron 1985, 41, 4279.

    35. [35]

      Meng, D.; Tang, Y.; Wei, J.; Shi, X.; Yang, M. Chem. Commun. 2017, 53, 5744.

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    5. [5]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    15. [15]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    16. [16]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    17. [17]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    18. [18]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(14)
  • Abstract views(980)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return