Citation:
LIU Han-Yu, YANG Zhong-Tian, YU Zi-Di, MI Tian-Xiong, BIAN Jiang. Research Progress on Frustrated Lewis Pairs Chemistry[J]. University Chemistry,
;2016, 31(4): 1-11.
doi:
10.3866/PKU.DXHX20160401
-
Frustrated Lewis Pairs (FLPs) represent a class of Lewis acids and bases possessing unique reactivities. Since their discovery, FLPs have obtained extensive attention and have grown rapidly on a broad range of studies. This paper highlights the application of FLPs in the fields of asymmetric hydrogenation, polymerization and catalytic reduction of CO2. Transition-metal FLPs and complexes containing FLPs ligands are also reviewed. Finally the trend in the development of FLPs is also discussed.
-
-
-
[1]
[1] Lewis, G. N. Valence and the Structure of Atoms and Molecules; Chemical Catalogue Company, Inc.: New York, 1923.
-
[2]
[2] Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D.W. Science 2006, 314 (5802), 1124.
-
[3]
[3] Wang, H. D.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, No. 45, 5966.
-
[4]
[4] Sajid, M.; Klose, A.; Birkmann, B.; Liang, L.; Schirmer, B.;Wiegand, T.; Eckert, H.; Lough, A. J.; Fröhlich, R.; Daniliuc, C. G.;Grimme, S.; Stephan, D.W.; Kehra, G.; Erker, G. Chem. Sci. 2013, 4 (1), 213.
-
[5]
[5] Erős, G; Mehdi, H.; Pápai, I.; Rokob, T. A.; Király, P.; Tárkányi, G.; Soós, T. Angew. Chem. Int. Edit. 2010, 49 (37), 6559.
-
[6]
[6] Chase, P. A.; Jurca, T.; Stephan, D.W. Chem. Commun. 2008, No. 14, 1701.
-
[7]
[7] Chen, D.; Klankermayer, J. Chem. Commun. 2008, No. 18, 2130.
-
[8]
[8] Chen, D.;Wang, Y.; Klankermayer, J. Angew. Chem. Int. Edit. 2010, 49 (49), 9475.
-
[9]
[9] Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskelä, M.; Rieger, B.; Repo, T. Adv. Synth. Catal. 2011, 353 (11-12), 2093.
-
[10]
[10] Stephan, D.W.; Greenberg, S.; Graham, T.W. Inorg. Chem. 2011, 50 (4), 1233.
-
[11]
[11] Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135 (18), 6810.
-
[12]
[12] Chen, E. Y.-X. Top. Curr. Chem. 2013, 334, 239.
-
[13]
[13] Murahashi, S.; Nozakura, S. I.; Hatada, K.; Takeuchi, S.; Aoki, T. Sen-iken. Nenpo. 1960, 13, 99.
-
[14]
[14] Ikeda, M.; Hirano, T.; Tsuruta, T. Makromol. Chem. 1971, 150 (1), 127.
-
[15]
[15] Kitayama, T.; Masuda, E.; Yamaguchi, M.; Nishiura, T.; Hatada, K. Polym. J. 1996, No. 24, 817.
-
[16]
[16] Zhang, Y.; Miyake, G. M.; Chen, E. Y.-X. Angew. Chem. Int. Edit. 2010, 49 (52), 10158.
-
[17]
[17] Zhang, Y.; Miyake, G. M.; John, M. G.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Dalton. Trans. 2012, 41 (30), 9119.
-
[18]
[18] Bolig, A. D.; Chen, E. Y.-X. J. Am. Chem. Soc. 2001, 123 (32), 7943.
-
[19]
[19] Ning, Y.; Zhu, H.; Chen, E. Y.-X. J. Organomet. Chem. 2007, 692 (21), 4535.
-
[20]
[20] Jun, K.-W.; Lee, K.-W. Ind. Eng. Chem. Res. 2001, 40 (5), 1355.
-
[21]
[21] Momming, C. M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D.W.; Erker, G. Angew. Chem. Int. Edit. 2009, 48 (36), 6643.
-
[22]
[22] Zhao, X.; Stephan, D.W. Chem. Commun. 2011, 47 (6), 1833.
-
[23]
[23] Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem. Int. Edit. 2009, 48 (52), 9839.
-
[24]
[24] Sumerin, V.; Schulz, F.; Nieger, M.; Leskelä, M.; Repo, T.; Rieger, B. Angew. Chem. Int. Edit. 2008, 47 (32), 6001.
-
[25]
[25] Berkefeld, A.; Piers,W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132 (31), 10660.
-
[26]
[26] Ménard, G.; Stephan, D.W. J. Am. Chem. Soc. 2010, 132 (6), 1796.
-
[27]
[27] Courtemanche, M.-A.; Légaré, M.-A.; Maron, L.; Fontaine, F. G. J. Am. Chem. Soc. 2014, 136 (30), 10708.
-
[28]
[28] Wang, T.; Stephan, D.W. Chem.-Eur. J. 2014, 20 (11), 3036.
-
[29]
[29] Kuzu, I.; Krummenacher, I.; Meyer, J.; Armbruster, F.; Breher, F. Dalton. Trans. 2008, No. 43, 5836.
-
[30]
[30] Harman,W. H.; Peters, J. C. J. Am. Chem. Soc. 2012, 134 (11), 5080.
-
[31]
[31] Forrest, S. J. K.; Clifton, J.; Fey, N.; Pringle, P. G.; Sparkes, H. A.;Wass, D. F. Angew. Chem. Int. Edit. 2015, 54 (7), 2223.
-
[32]
[32] Neu, R. C.; Otten, E.; Lough, A.; Stephan, D.W. Chem. Sci. 2011, 2 (1), 170.
-
[33]
[33] Chapman, A. M.; Haddow, M. F.;Wass, D. F. J. Am. Chem. Soc. 2011, 133 (45), 18463.
-
[34]
[34] Gnanaprakasam, B.; Zhang, J.; Milstein, D. Angew. Chem. Int. Edit. 2010, 49 (8), 1468.
-
[35]
[35] Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127 (31), 10840.
-
[36]
[36] Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317 (5839), 790.
-
[1]
-
-
-
[1]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[2]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[3]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[4]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[5]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[6]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[9]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[10]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[11]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[12]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[13]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[14]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[15]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[16]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[17]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[18]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[19]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[20]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(622)
- HTML views(130)