Citation: LIU Han-Yu, YANG Zhong-Tian, YU Zi-Di, MI Tian-Xiong, BIAN Jiang. Research Progress on Frustrated Lewis Pairs Chemistry[J]. University Chemistry, ;2016, 31(4): 1-11. doi: 10.3866/PKU.DXHX20160401 shu

Research Progress on Frustrated Lewis Pairs Chemistry

  • Corresponding author: BIAN Jiang, 

  • Frustrated Lewis Pairs (FLPs) represent a class of Lewis acids and bases possessing unique reactivities. Since their discovery, FLPs have obtained extensive attention and have grown rapidly on a broad range of studies. This paper highlights the application of FLPs in the fields of asymmetric hydrogenation, polymerization and catalytic reduction of CO2. Transition-metal FLPs and complexes containing FLPs ligands are also reviewed. Finally the trend in the development of FLPs is also discussed.
  • 加载中
    1. [1]

      [1] Lewis, G. N. Valence and the Structure of Atoms and Molecules; Chemical Catalogue Company, Inc.: New York, 1923.

    2. [2]

      [2] Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D.W. Science 2006, 314 (5802), 1124.

    3. [3]

      [3] Wang, H. D.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, No. 45, 5966.

    4. [4]

      [4] Sajid, M.; Klose, A.; Birkmann, B.; Liang, L.; Schirmer, B.;Wiegand, T.; Eckert, H.; Lough, A. J.; Fröhlich, R.; Daniliuc, C. G.;Grimme, S.; Stephan, D.W.; Kehra, G.; Erker, G. Chem. Sci. 2013, 4 (1), 213.

    5. [5]

      [5] Erős, G; Mehdi, H.; Pápai, I.; Rokob, T. A.; Király, P.; Tárkányi, G.; Soós, T. Angew. Chem. Int. Edit. 2010, 49 (37), 6559.

    6. [6]

      [6] Chase, P. A.; Jurca, T.; Stephan, D.W. Chem. Commun. 2008, No. 14, 1701.

    7. [7]

      [7] Chen, D.; Klankermayer, J. Chem. Commun. 2008, No. 18, 2130.

    8. [8]

      [8] Chen, D.;Wang, Y.; Klankermayer, J. Angew. Chem. Int. Edit. 2010, 49 (49), 9475.

    9. [9]

      [9] Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskelä, M.; Rieger, B.; Repo, T. Adv. Synth. Catal. 2011, 353 (11-12), 2093.

    10. [10]

      [10] Stephan, D.W.; Greenberg, S.; Graham, T.W. Inorg. Chem. 2011, 50 (4), 1233.

    11. [11]

      [11] Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135 (18), 6810.

    12. [12]

      [12] Chen, E. Y.-X. Top. Curr. Chem. 2013, 334, 239.

    13. [13]

      [13] Murahashi, S.; Nozakura, S. I.; Hatada, K.; Takeuchi, S.; Aoki, T. Sen-iken. Nenpo. 1960, 13, 99.

    14. [14]

      [14] Ikeda, M.; Hirano, T.; Tsuruta, T. Makromol. Chem. 1971, 150 (1), 127.

    15. [15]

      [15] Kitayama, T.; Masuda, E.; Yamaguchi, M.; Nishiura, T.; Hatada, K. Polym. J. 1996, No. 24, 817.

    16. [16]

      [16] Zhang, Y.; Miyake, G. M.; Chen, E. Y.-X. Angew. Chem. Int. Edit. 2010, 49 (52), 10158.

    17. [17]

      [17] Zhang, Y.; Miyake, G. M.; John, M. G.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Dalton. Trans. 2012, 41 (30), 9119.

    18. [18]

      [18] Bolig, A. D.; Chen, E. Y.-X. J. Am. Chem. Soc. 2001, 123 (32), 7943.

    19. [19]

      [19] Ning, Y.; Zhu, H.; Chen, E. Y.-X. J. Organomet. Chem. 2007, 692 (21), 4535.

    20. [20]

      [20] Jun, K.-W.; Lee, K.-W. Ind. Eng. Chem. Res. 2001, 40 (5), 1355.

    21. [21]

      [21] Momming, C. M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D.W.; Erker, G. Angew. Chem. Int. Edit. 2009, 48 (36), 6643.

    22. [22]

      [22] Zhao, X.; Stephan, D.W. Chem. Commun. 2011, 47 (6), 1833.

    23. [23]

      [23] Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem. Int. Edit. 2009, 48 (52), 9839.

    24. [24]

      [24] Sumerin, V.; Schulz, F.; Nieger, M.; Leskelä, M.; Repo, T.; Rieger, B. Angew. Chem. Int. Edit. 2008, 47 (32), 6001.

    25. [25]

      [25] Berkefeld, A.; Piers,W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132 (31), 10660.

    26. [26]

      [26] Ménard, G.; Stephan, D.W. J. Am. Chem. Soc. 2010, 132 (6), 1796.

    27. [27]

      [27] Courtemanche, M.-A.; Légaré, M.-A.; Maron, L.; Fontaine, F. G. J. Am. Chem. Soc. 2014, 136 (30), 10708.

    28. [28]

      [28] Wang, T.; Stephan, D.W. Chem.-Eur. J. 2014, 20 (11), 3036.

    29. [29]

      [29] Kuzu, I.; Krummenacher, I.; Meyer, J.; Armbruster, F.; Breher, F. Dalton. Trans. 2008, No. 43, 5836.

    30. [30]

      [30] Harman,W. H.; Peters, J. C. J. Am. Chem. Soc. 2012, 134 (11), 5080.

    31. [31]

      [31] Forrest, S. J. K.; Clifton, J.; Fey, N.; Pringle, P. G.; Sparkes, H. A.;Wass, D. F. Angew. Chem. Int. Edit. 2015, 54 (7), 2223.

    32. [32]

      [32] Neu, R. C.; Otten, E.; Lough, A.; Stephan, D.W. Chem. Sci. 2011, 2 (1), 170.

    33. [33]

      [33] Chapman, A. M.; Haddow, M. F.;Wass, D. F. J. Am. Chem. Soc. 2011, 133 (45), 18463.

    34. [34]

      [34] Gnanaprakasam, B.; Zhang, J.; Milstein, D. Angew. Chem. Int. Edit. 2010, 49 (8), 1468.

    35. [35]

      [35] Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127 (31), 10840.

    36. [36]

      [36] Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317 (5839), 790.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(6)
  • Abstract views(622)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return