Citation: TIAN Miaomiao,  YANG Li. Advances in on-line enzyme assays by sequence analysis-based capillary electrophoresis[J]. Chinese Journal of Chromatography, ;2020, 38(10): 1143-1153. doi: 10.3724/SP.J.1123.2020.05008 shu

Advances in on-line enzyme assays by sequence analysis-based capillary electrophoresis

  • Corresponding author: YANG Li, yangl330@nenu.edu.cn
  • Received Date: 9 May 2020

    Fund Project: National Natural Science Foundation of China (No. 21775017)

  • Due to unique advantages such as short analysis time, high separation efficiency and sensitivity, easy automation, extremely low sample and reagent volume requirements, and the ability to utilize several detection methods, capillary electrophoresis (CE) is used as a high-efficiency separation technique, and has been developed as a powerful tool for on-line enzyme assays. On-line enzyme assays based on CE have been applied to almost all aspects of enzyme assays over the past two decades, including the evaluation of enzyme activities and kinetics, identification and characterization of enzyme inhibitors and activators, detection of enzyme substrates, investigation of enzyme-mediated metabolic pathways, and proteome analysis. One potential use of enzyme assays is in tracing enzymatic reactions from beginning to the end at high temporal resolution. Measurements of enzyme reactions at high temporal resolution can result in more accurate estimates of reaction mechanisms and reaction rate constants, which is vitally important for improving understanding of the functions of enzymes in metabolism and for identifying the potential use of enzymes in clinical diagnostics. Furthermore, high-throughput online enzyme analysis is of great importance for the analysis of enzyme reactions and enzyme inhibition reactions. The development of accurate, rapid and high-throughput enzyme inhibition screening methods is especially important for accelerating the development of new drugs. Electrophoretically mediated microanalysis (EMMA) and CE-integrated immobilized enzyme microreactor (IMER) are the two most used techniques for online CE enzyme assays. The EMMA technique utilizes different electrophoretic mobilities of enzymes and substrates to initiate reactions within the capillary and to separate the components of the reaction mixture for the final in-capillary quantification. In a CE-integrated IMER, the enzyme is bound to the capillary surface or to a suitable carrier attached to the capillary through physical adsorption, cross-linking, covalent bonding or other methods. The enzyme reactor is usually located at one end of the capillary; the enzyme-catalyzed reaction occurs when the substrates pass through the enzyme reactor and the substrates/products of the enzymatic reaction are separated and online detected by CE at the downstream end of the capillary. In both either techniques, the samples are usually introduced into the capillary by electrokinetic injection or by hydrodynamic injection. Because both injection methods require that the capillary inlet be physically moved from the sample container to the running buffer for CE analysis after each sample injection, it is unlikely that EMMA or microreactor techniques can be successfully used to perform sequential online analysis. Therefore, a CE sequence analysis technique based on rapid sequential injection has been developed as another powerful method for online enzyme analysis. Compared with the widely used electrokinetic and hydrodynamic injection methods used in traditional CE online enzyme analysis methods, rapid sequence injection methods can achieve sequential injection without any physical disturbance of the capillary inlet, allowing for the successful performance of online enzyme assays with high temporal resolution and at high throughput. A rapid, sequential, and automatic sample introduction system is an important part of online enzyme analysis based on CE sequence analysis. Several sequential injection methods such as optical-gating injection, flow-gated injection, two-dimension diffusion injection, flow injection and droplet microfluidics combined with CE have been developed to successfully perform online enzyme assays with high temporal resolution and high throughput. In this paper, we will review recently developed CE online enzyme assays and inhibition studies based on rapid sequential injection. We review the progress and applications of various sequential sample injection approaches that have been developed for sequential on-line CE analysis of enzyme reactions at high temporal resolution and high-throughput screening of enzyme inhibitors, including optical-gating injection, flow gated injection, two-dimension diffusion injection, flow injection and droplet microfluidics.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

    38. [38]

    39. [39]

    40. [40]

    41. [41]

    42. [42]

    43. [43]

    44. [44]

    45. [45]

    46. [46]

    47. [47]

    48. [48]

    49. [49]

    50. [50]

    51. [51]

    52. [52]

    53. [53]

    54. [54]

  • 加载中
    1. [1]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    2. [2]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    7. [7]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    8. [8]

      Ping Cai Yaxian Zhu Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    12. [12]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    13. [13]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    14. [14]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    15. [15]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    16. [16]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    17. [17]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    18. [18]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    19. [19]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    20. [20]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

Metrics
  • PDF Downloads(0)
  • Abstract views(219)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return