Citation: WANG Fang,  WANG Song,  CONG Hailin,  YU Bing. Analysis of metabolomics and proteomics based on capillary electrophoresis-mass spectrometry[J]. Chinese Journal of Chromatography, ;2020, 38(9): 1013-1021. doi: 10.3724/SP.J.1123.2020.02025 shu

Analysis of metabolomics and proteomics based on capillary electrophoresis-mass spectrometry

  • Corresponding author: YU Bing, yubingqdu@163.com
  • Received Date: 4 March 2020

    Fund Project: National Natural Science Foundation of China (Nos. 21675091, 21874078).

  • Capillary electrophoresis-mass spectrometry (CE-MS) has the advantages of higher sensitivity, higher efficiency, and less sample consumption. Moreover, it possesses obvious advantages during the analysis of strongly charged and highly polar samples. CE-MS has been widely applied in life sciences, medicine, and pharmacology. In the past ten years, the main factors affecting its application were system stability, reproducibility, and data accuracy. In order to solve the existing problems of CE-MS, researchers have invested significant effort in technology innovation to further expand CE-MS application. In the fields of medicine and analytical chemistry, substantial research indicates that CE-MS is superior compared to other metabolomic and proteomic approaches.
    This study aims at reviewing the latest methods and applications developed in the fields of medicine and analytical chemistry since 2015. Furthermore, it also aims at enhancing the technology development-related application value of CE-MS and serving as a reference for future development. Further development of the CE-MS technology is discussed from the aspects of coating-sample interaction, interface types, and data processing methods. Concerning the coating types, neutral coatings had been applied extensively in CE-MS and there should be no limitation to the charge of the analyte. The coating decreased sample adsorption on the inner wall by covering the surface charge, greatly reducing the electroosmotic flow (EOF). A charged capillary coating could modify such an EOF direction. The cationic coating could reduce the hydrophobic interaction between the sample and the capillary column, resulting in higher EOF. If it is applied to the sheathless interface, the resolution could be improved by extending the capillary length. Anionic coatings are predominant among the anionic compounds, shortening the separation time by reducing the interaction between the anionic compounds and the capillary. The coating type should be chosen relative to the analyte characteristics. Concerning the interface technology, all interfaces should be simple, practical, and non-dependent on sheath liquid and background electrolytes. As far as data processing methods are concerned, it is necessary to design and develop a practical method for span space data comparison and processing.
    The optimized experimental conditions have effectively improved separation efficiency and data comparison analysis. Furthermore, they established a solid foundation for its application development. CE-MS analysis of complex samples in the fields of metabolomics and proteomics (e. g., of tissues, cells, body fluids, etc.) could provide a visualization method for future clinical analysis. It contributes to the development of cancer pathological analysis, drug development, disease surveillance, etc. The characteristic analysis of small molecule metabolites and protein biomarkers directly reflects on enzymatic activity in the biological systems. It could be associated with the development of various diseases/complications. Omics analysis also has an important directive to disease detection and surveillance with obvious advantages in disease diagnosis, staged treatment, drug development, and patient treatment progress. CE-MS is useful in detecting complications and promoting personalized medicine. It provides technical support for future clinical developments.
    In addition to a comprehensive review of the recent advances of CE-MS research, this paper also indicates the development directions of CE-MS. In order to avoid the problem of omics analysis and obtain the optimized analysis results, future analysis should be improved from the following three aspects:(i) The analysis conditions should be optimized concerning sample preparation methods and separation techniques. (ii) The analytic techniques should be supported to adjust to capillary coating and interface technology. (iii) New ideas should be developed in the fields of clinical research and statistical analysis.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

    38. [38]

    39. [39]

    40. [40]

    41. [41]

    42. [42]

    43. [43]

    44. [44]

    45. [45]

    46. [46]

    47. [47]

    48. [48]

    49. [49]

    50. [50]

    51. [51]

    52. [52]

    53. [53]

    54. [54]

    55. [55]

    56. [56]

    57. [57]

    58. [58]

    59. [59]

    60. [60]

    61. [61]

    62. [62]

    63. [63]

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    4. [4]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    7. [7]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    8. [8]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    9. [9]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    10. [10]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    11. [11]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    12. [12]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    13. [13]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    14. [14]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    15. [15]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    16. [16]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    17. [17]

      Yan Su Xiuyun Wang Huimin Guo Yanjuan Zhang Xinwen Zhang Yunting Shang Wenfeng Jiang . To Cultivate Scientific Literacy by Learning, Thinking, Practicing and Understanding, To Utilize the “Smart Eye” Expertise by Integrating of Knowledge and Action: Ideological and Political Construction of Analytical Chemistry Experiment Course. University Chemistry, 2024, 39(2): 196-202. doi: 10.3866/PKU.DXHX202308003

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    20. [20]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

Metrics
  • PDF Downloads(21)
  • Abstract views(683)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return