Citation: YUAN Jiwei,  WANG Jincheng,  XU Weili,  XU Fangxi,  LU Xianbo. Simultaneous determination of polycyclic aromatic hydrocarbons and phthalate esters in surface water by dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by high performance liquid chromatography[J]. Chinese Journal of Chromatography, ;2020, 38(11): 1308-1315. doi: 10.3724/SP.J.1123.2020.01020 shu

Simultaneous determination of polycyclic aromatic hydrocarbons and phthalate esters in surface water by dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by high performance liquid chromatography

  • Corresponding author: WANG Jincheng, wangjincheng@dicp.ac.cn
  • Received Date: 2 March 2020

    Fund Project: Liaoning Natural Science Foundation (No. 2019-MS-317).

  • Polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) are internationally recognized as priority pollutants; hence, it is important to monitor their concentrations in the environment. However, the low concentrations of PAHs and PAEs in surface water make the direct and sensitive determination of these compounds by instrumental methods difficult. Therefore, the development of an accurate and rapid sample pretreating method for the determination of PAHs and PAEs in water has always been the goal of environmental scientists. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) is a simple, rapid, low-cost, sensitive, and environmentally friendly method. Methods based on DLLME-SFO for the simultaneous determination of PAHs and PAEs in surface water have rarely been reported. In this study, a novel DLLME-SFO method was developed for the simultaneous determination of 16 PAHs and 6 PAEs in surface water samples. To optimize the extraction efficiency for the target compounds, various parameters, including the types and volumes of extractants and dispersants, ionic strength, and extraction time, were investigated. First, 1-undecanol (melting point:19℃) and 1-dodecanol (melting point:24℃) were selected as extractive solvents, and their extraction efficiency was investigated. The results showed that 1-dodecanol had better extraction efficiency. The melting point of 1-undecanol was relatively low, and the droplets that solidified during the experiment were easy to melt and break, which led to the low recovery rate of extraction. Then, the effect of the volume (10, 20, 30, 40, 50 μL) of 1-dodecanol was investigated, and the extraction efficiency of the target compounds was found to decrease with increasing volume of 1-dodecanol. Second, the effect of four dispersive solvents (methanol, ethanol, acetonitrile, and acetone) on the extraction efficiencies was studied. The extraction efficiencies of the target compounds were the highest when methanol was used as the dispersant; hence, the effect of different volumes of methanol on the extraction efficiency was further examined. When the volume of methanol was less than 500 μL, the contact area between the extraction solvent and the water phase increased with increasing methanol volume, and the extraction efficiency increased. However, when the volume of methanol was more than 500 μL, the excessive dispersant increased the solubility of the target compound in the water phase, which led to a decrease in the extraction efficiency. Finally, the effects of salt addition and vortex oscillation time on the extraction efficiency were probed. The experimental results indicated that the extraction efficiency increased with an increase in the quantity of NaCl. When the NaCl quantity was greater than 0.2 g, there was no notable change in the extraction efficiency. Vortex oscillation could accelerate the establishment of the extraction equilibrium, and the extraction efficiency reached a stable state when the vortex oscillation time was more than 2 min. According to the abovementioned results, the optimized DLLME-SFO conditions were established as follows:for 5.0 mL water samples, 10 μL of 1-dodecanol was chosen as the extraction solvent, 500 μL of methanol was used as the dispersive solvent, the vortex oscillation extraction time was 2 min, and the NaCl quantity was 0.2 g. The target compounds were analyzed by high-performance liquid chromatography. Separation of the PAHs and PAEs was achieved on a SUPELCOSILTM LC-PAH column (150 mm×4.6 mm, 5 μm) with acetonitrile-water as the mobile phase using a gradient elution program. Fifteen PAHs were detected using a fluorescence detector, and six PAEs and acenaphthylene were detected by an ultraviolet detector. Quantitative determination was achieved by the external standard method. This method was successfully validated for the analyses of the 16 PAHs and 6 PAEs in two types of water samples (tap water and river water). The average recoveries of the target compounds were 60.2%-113.5%, and the corresponding relative standard deviations (RSDs, n=3) were 1.9%-14.3%. The limits of detection (LODs, S/N=3) ranged from 0.002 μg/L to 0.07 μg/L for the PAHs and from 0.2 μg/L to 2.2 μg/L for the PAEs. The limits of quantification (LOQs, S/N=10) ranged from 0.006 μg/L to 0.23 μg/L for the PAHs and from 0.8 μg/L to 7.4 μg/L for PAEs. The proposed method is simple, fast, low-cost, and environmentally friendly, and it is suitable for the rapid determination of trace PAHs and PAEs in surface water samples.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    5. [5]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    14. [14]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    17. [17]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(6)
  • Abstract views(674)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return