Citation: YUE Yuhua,  ZHOU Bingjun,  AI Jiayuan,  FENG Shun. Determination of dacarbazine in the urine of mice with melanoma by high performance liquid chromatography[J]. Chinese Journal of Chromatography, ;2020, 38(11): 1302-1307. doi: 10.3724/SP.J.1123.2020.01003 shu

Determination of dacarbazine in the urine of mice with melanoma by high performance liquid chromatography

  • Corresponding author: FENG Shun, fengshunxd@hotmail.com
  • Received Date: 4 January 2020

    Fund Project: Personalized Experiment Project of Southwest Jiaotong University (No. GX201913093)

  • Dacarbazine (DTIC) is a first-line chemotherapy drug that is widely used in clinical practice for malignant melanoma. DTIC is metabolized by the liver in vivo. Some drugs are excreted in urine in the form of a prototype. Hence, DTIC in urine can be monitored to evaluate its utilization and conversion rate in the human body, and then to determine its therapeutic effect. Urine is the only body fluid that can be obtained in large quantities without damage, and it plays an important role in the analysis of body functions. However, the composition of urine is complex and there is large matrix interference, because of which trace analysis or trace component analysis is difficult. At present, the main analytical methods for DTIC are high performance liquid chromatography (HPLC) with/without mass spectrometry (MS). HPLC and HPLC-MS have the advantages of good separation effect, good selectivity, high detection sensitivity, automatic operation, and wide application range. Unfortunately, DTIC is a strongly polar and weakly basic compound; thus, it is difficult to achieve good separation and obtain good peak shapes by conventional reversed-phase chromatography. To overcome these defects, it is necessary to develop a novel method for the analysis of DTIC. In this study, mice were subjected to 12 h of fasting; then, blueberry anthocyanin was administered by gavage, and DTIC was administered by intraperitoneal injection. Then, morning urine was collected in a metabolic cage. Urine collection was continued every 4 days for a total of 5 times. Within 2 h, the collected urine was centrifuged (3000 g, 4℃) for 10 min to remove solids. The supernatant was stored in a refrigerator at-80℃. Before analysis, the urine samples were removed from the refrigerator and thawed naturally at room temperature. Then, the samples were treated by the acetone-sediment method, freeze-dried, dissolved in the mobile phase, and subjected to HPLC analysis with isocratic elution. The separation was performed on a Shimadzu-GL ODS column (250 mm×4.6 mm, 5 μm). The mobile phase was methanol/acetonitrile (1:1, v/v)-0.01 mol/L NaH2PO4 (pH 6.5; 20:80, v/v) at a flow rate of 1 mL/min. The detection wavelength, column temperature, and running time were 280 nm, 30℃, and 15 min, respectively. Under the optimized conditions, the retention time of DTIC was 5.3 min, and a good peak shape was obtained. The linearity ranged from 0.25 to 1000 μg/mL (r2=0.999). The limits of detection and quantification were calculated to be 0.12 μg/mL and 0.25 μg/mL based on signal-to-noise ratios of 3 and 10, respectively. At three spiked levels (50.0, 375, and 500 μg/mL), the average recoveries were 98.9%, 102%, and 99.1% with relative standard deviations (RSDs) of 3.2%, 1.3%, and 1.2% (n=5), respectively. The RSDs of the interday and intraday measurements were lower than 3.8% and 4.4%, respectively. The proposed method allowed for the accurate determination of DTIC in urine using a mixed organic solvent/phosphate buffer solution as the mobile phase, with equivalent elution for 15 min. This method was successfully applied to monitor the change in DTIC concentration in the urine of C57BL/6 mice in various stages of melanoma. The results demonstrate that the method is simple, reliable, and easy to apply.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

  • 加载中
    1. [1]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    6. [6]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    7. [7]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    8. [8]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    15. [15]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    19. [19]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(3)
  • Abstract views(614)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return