Citation:
ZHANG Xianfei, YANG Junli, CHEN Juan, SHI Yanping. Fast determination of betaine in Lycii Fructus by ultra-performance convergence chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,
;2018, 36(5): 417-424.
doi:
10.3724/SP.J.1123.2017.12020
-
Over the past 2500 years, Lycii Fructus has been widely used as a functional food and tonic in Chinese herbal medicine. It can nourish the liver and kidneys, moisten the lungs, and improve eyesight. In this study, a new rapid and sensitive method has been developed for the quantitative determination of betaine (index compound) in Lycii Fructus by using ultra-performance convergence chromatography-tandem mass spectrometry (UPC2-MS). The separation of betaine was successfully achieved on an ACQUITY UPC2 BEH 2-EP column (150 mm×2.1 mm, 1.7 μm), with isocratic elution by a CO2-methanol (80:20, v/v) solvent at a flow rate of 0.7 mL/min. The conditions used in the separation process were as follows:modifier, 0.1% (v/v) formic acid in methanol; column temperature, 40℃; backpressure, 1.31×107 Pa; injection volume, 1 μL; and retention time, 3 min. The MS system was equipped with an electrospray ionization (ESI) ion source and operated in the selected ion recording (SIR) and positive ion mode. Under the abovementioned conditions, the calibration curve was obtained. The linear range of detection was 0.5-50.0 μg/mL, with a correlation coefficient of 0.9992, and the limit of detection (LOD) was found to be 0.013 μg/mL. The validity of the method was tested by analyses of precision, repeatability, stability, and accuracy (average recovery:96.3%). Finally, the developed method was applied to analyze 11 batches of samples. The results indicated that this method was suitable for evaluating the quality of Lycii Fructus.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[22]
-
[23]
-
[24]
-
[25]
-
[26]
-
[27]
-
[28]
-
[29]
-
[30]
-
[31]
-
[32]
-
[33]
-
[34]
-
[1]
-
-
-
[1]
Haifeng Ma , Xiaocong Tian , Fengbin Wang , Zhonghua Xi , QingWang . Design of College Chemistry Experiment Based on Product Quality Control: Taking “Optimization of Ferrous Fumarate Synthesis Process” as an Example. University Chemistry, 2025, 40(7): 321-327. doi: 10.12461/PKU.DXHX202409056
-
[2]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[3]
Yifan Xie , Liyun Yao , Ruolin Yang , Yuxing Cai , Yujie Jin , Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133
-
[4]
Zimo Shen , Tongwei Zhang , Zhiyi Zhu , Zonghao Gong , Qing Feng , Jinyi Yang , Zhen Li , Min Liu , Wei Qi . From Alkaloid to Anticancer Agent: The Transformative Journey of Camptothecin. University Chemistry, 2025, 40(10): 161-165. doi: 10.12461/PKU.DXHX202411027
-
[5]
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
-
[6]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[7]
Wanchun Zhu , Yongmei Liu , Li Wang , Yunshan Bai , Shu'e Song , Xiaokui Wang , Zhongyun Wu , Hong Yuan , Yunchao Li , Fuping Tian , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028
-
[8]
Zhongyun Wu , Li Wang , Xiaokui Wang , Wanchun Zhu , Yuan Chun , Fuping Tian , Yongmei Liu , Yunshan Bai , Hong Yuan , Yufeng Li , Shu'e Song , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Pressure. University Chemistry, 2025, 40(5): 137-147. doi: 10.12461/PKU.DXHX202503027
-
[9]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[10]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[11]
Gang Liu , Heng Zhang , Ying Ma , Shiling Yuan , Qisheng Song , Zhenghu Xu , Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079
-
[12]
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
-
[13]
Yang Liu , Ying Yu , Yilei Wang , Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069
-
[14]
Shunü Peng , Huamin Li , Zhaobin Chen , Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043
-
[15]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[16]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[17]
Xiaoyan Wang , Yan Qi , Lin Tang , Shuwen Wang , Huiling Wen , Hongtao Gao . Improvement of the Quality Construction of Basic Chemistry Experimental Teaching Center under the Background of Education Digitization. University Chemistry, 2024, 39(7): 40-48. doi: 10.12461/PKU.DXHX202404124
-
[18]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[19]
Yidan Jing , Xiaomin Zhang , Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146
-
[20]
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(430)
- HTML views(61)
Login In
DownLoad: