Citation:
LIU Wei, QI Shenglan, XU Ying, XIAO Zhun, FU Yadong, CHEN Jiamei, YANG Tao, LIU Ping. Determination of hydroxyproline in liver tissue by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry[J]. Chinese Journal of Chromatography,
;2017, 35(12): 1251-1256.
doi:
10.3724/SP.J.1123.2017.09020
-
A method for the determination of hydroxyproline (Hyp) in liver tissue of mice by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (HILIC-HRMS) was developed. The liver tissue samples of normal mice and liver fibrosis mice induced by carbon tetrachloride were hydrolyzed by concentrated hydrochloric acid. After filtrated and diluted by solution, the diluent was separated on an Hypersil GOLD HILIC column (100 mm×2.1 mm, 3 μm). Water-acetonitrile (28:72, v/v)were used as the mobile phases with isocratic elution. Finally, the target analytes were detected in positive model by HRMS equipped with an electrospray ionization source. The linear range of hydroxyproline was from 0.78 to 100.00 μg/L with the correlation coefficient (R2) of 0.9983. The limit of quantification was 0.78 μg/L. By detecting the spiked samples, the recoveries were in the range of 97.4%-100.9% with the relative standard deviations (RSDs) between 1.4% and 2.0%. In addition, comparison of the measurement results by this method and the chloramine T method was proceeded. It was found that the linear correlation between the two methods was very good, and the Pearson correlation coefficient was 0.927. And this method had simpler operation procedure and higher accuracy than chloramine T method. This method can be used for the quick determination of hydroxyproline in liver tissue samples.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[1]
-
-
-
[1]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[2]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[3]
Yuxin CHEN , Yanni LING , Yuqing YAO , Keyi WANG , Linna LI , Xin ZHANG , Qin WANG , Hongdao LI , Wenmin WANG . Construction, structures, and interaction with DNA of two SmⅢ4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258
-
[4]
Dan LUO , Xingcheng LIU , Dong LI , Tong CHANG . Metal-support interaction effects on CO activation over Con/SiO2 catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003
-
[5]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[6]
Jia JI , Tengqi YAO , Wenqian DENG , Wenjing SHI , Xuan LÜ , Lin TIAN , Xiaoyan XIN , Yinling HOU . Structures, antibacterial activities, and interactions with DNA of two nickel complexes. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 78-86. doi: 10.11862/CJIC.20250141
-
[7]
Xiao Ma , Junjie Wang , Xin Chen , Jingcheng Li , Lihong Zhao , Xueping Sun , Shaojuan Cheng , Fang Wang . Exploring Innovative Approaches to Chemistry Instructional Organization Driven by Artificial Intelligence. University Chemistry, 2025, 40(9): 99-106. doi: 10.12461/PKU.DXHX202410085
-
[8]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004
-
[9]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[10]
Yuai Duan , Xuanyu Gan , Yao Fu , Yingjie Cao , Hongliang Han , Zhanfang Ma . Application and Innovative Design of Digital Technology in the Preparation Experiment of Cis(Trans)-Diglycine Copper Complexes. University Chemistry, 2026, 41(1): 373-381. doi: 10.12461/PKU.DXHX202504048
-
[11]
Xiaojing Tian , Zhichun Huang , Qingsong Zhang , Xu Wang , Ning Yang , Nanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037
-
[12]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[13]
Yiying Yang , Rongxiu Zhu , Yuchen Ma , Dongju Zhang . MATLAB-based Visualization of Hydrogen-Like Orbitals and Analysis of Relavant Teaching Problems. University Chemistry, 2025, 40(9): 375-382. doi: 10.12461/PKU.DXHX202411015
-
[14]
Xian-Wei Lv , Xinyuan Ding , Jiaxing Gong , Xuhuan Yan , Dayong Huang , Jianxin Geng , Zhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151
-
[15]
Ping Che , Mingwen Wang . Exploration of Hybrid Orbital Theory Teaching Based on the “FiveQuestion” Model. University Chemistry, 2026, 41(2): 119-122. doi: 10.12461/PKU.DXHX202503063
-
[16]
Jinglun Wang , Hu Zhou , Baishu Zheng , Guobin Li , Ming Yue , Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013
-
[17]
Yi Fan , Zhuoqi Jiang , Zhipeng Li , Xuan Zhou , Jingan Lin , Laiying Zhang , Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061
-
[18]
Yan Long , Wenbo Zhao , Qing Cao , Xiangyu Li , Fukui Li , Yanwei Hu , Shiyu Song , Kaikai Liu . Phosphorescent carbon nanodot inks for scalable and high-resolution invisible printing. Acta Physico-Chimica Sinica, 2026, 42(3): 100198-0. doi: 10.1016/j.actphy.2025.100198
-
[19]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[20]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(785)
- HTML views(52)
Login In
DownLoad: