Citation: WU Xuejing, JIN Jie, YAN Wei, XIAO Hua, FAN Liuyin, CAO Chengxi. Numerical computation and experimental verification of a derivatized moving reaction boundary originally created with formic buffer and sodium hydroxide[J]. Chinese Journal of Chromatography, ;2016, 34(8): 801-810. doi: 10.3724/SP.J.1123.2016.04029 shu

Numerical computation and experimental verification of a derivatized moving reaction boundary originally created with formic buffer and sodium hydroxide

  • Corresponding author: FAN Liuyin,  CAO Chengxi, 
  • Received Date: 19 April 2016

  • A model of derivatized moving reaction boundary (MRB) is formulated from original MRB formed with formic buffer (phase α) and sodium hydroxide (phase γ). The model shows the formation of a new phase (phase β) with high pH value originated from phase γ, derivatized MRB created with phases α and β, as well as stationary boundary formed between phases β and γ. To demonstrate the validity of this model, the theoretical and numerical procedures are advanced. At the same time, the experimental procedures are also developed relied on a capillary electrophoresis (CE) and a home-made apparatus. There are evident systemic errors and low agreements between the experimental results and theoretical calculation with the original model of MRB developed in our previous papers. However, there are much high agreements between the experiments and theoretical computation relied on the model of derivatized MRB developed herein. The model of derivatized MRB together with the relative theoretical and experimental procedures holds evident significance for the design of the new separation and compressive techniques of samples used widely in electrophoresis including CE.
  • 加载中
    1. [1]

      [1] MacInnes D A, Longsworth L G. Chem Rev, 1932, 11: 172

    2. [2]

      [2] Longsworth L G. J Am Chem Soc, 1945, 67: 1109  

    3. [3]

      [3] Dole V P. J Am Chem Soc, 1945, 67: 1119  

    4. [4]

      [4] Svensson H. Acta Chem Scand, 1948, 2: 841  

    5. [5]

      [5] Alberty R A, Nichol J C. J Am Chem Soc, 1948, 70: 2297

    6. [6]

      [6] Alberty R A. J Am Chem Soc, 1950, 72: 2361  

    7. [7]

      [7] Nichol J C. J Am Chem Soc, 1950, 72: 2367  

    8. [8]

      [8] Nichol J C, Gosting L J. J Am Chem Soc, 1958, 80: 2601  

    9. [9]

      [9] Bier M. Electrophoresis: Theory, Methods and Applications. New York: Acadmic Press, 1959

    10. [10]

      [10] Boĉek P, Deml M, Gebauer P, et al. Analytical Isotachophoresis. New York: VCH Verlagsgesellschaft, 1988

    11. [11]

      [11] Deman J, Rigole W. J Phys Chem, 1970, 74: 1122  

    12. [12]

      [12] Deman J. Anal Chem, 1970, 42: 321  

    13. [13]

      [13] Cao C X, Fan L Y, Zhang W. Analyst, 2008, 133: 1139  

    14. [14]

      [14] Cao C X. J Chromatogr A, 1998, 813: 153  

    15. [15]

      [15] Guo C G, Li S, Wang H Y, et al. Talanta, 2013, 111(13): 20

    16. [16]

      [16] Wang H Y, Li S, Tang Y Y, et al. Analyst, 2013, 138(12): 3544  

    17. [17]

      [17] Cao C X, Zhang W, Qin W H, et al. Anal Chem, 2005, 77: 955  

    18. [18]

      [18] Grochocki W, Markuszewski M J, Quirino J P. J Chromatogr A, 2015, 1424: 111  

    19. [19]

      [19] Kong Y, Yuan J Q, Wang Z L, et al. J Sep Sci, 2014, 37(6): 717  

    20. [20]

      [20] Li W J, Zech I, Gieselmann V, et al. J Chromatogr A, 2015, 1407: 222  

    21. [21]

      [21] Fan L Y, Li C, Zhang W, et al. Electrophoresis, 2008, 29: 3989  

    22. [22]

      [22] Jin J, Shao J, Li S, et al. J Chromatogr A, 2009, 1216: 4913  

    23. [23]

      [23] Sun C, Yang X D, Fan L Y, et al. Anal Bioanal Chem, 2011, 399(10): 3441  

    24. [24]

      [24] Cao C X, Zhang W, Fan L Y, et al. Talanta, 2011, 84(3): 651  

    25. [25]

      [25] Zhang W, Fan L Y, Shao J, et al. Talanta, 2011, 84(2): 547  

    26. [26]

      [26] Tang Y Y, Wang H Y, Chen L, et al. Anal Bioanal Chem, 2013, 405(26): 8587  

    27. [27]

      [27] Tiselius A. Nova Acta Reg Soc Sci Upsal, 1930, 4: 7

    28. [28]

      [28] Mosher R A, Saville D A, Thormann W. The Dynamics of Electrophoresis. Cambridge: VCH Weinheim, 1992

    29. [29]

      [29] David R L. CRC Handbook of Chemistry and Physics. Boca Raton: Fla CRC Press, 1992

    30. [30]

      [30] Vlastimil H, Bohuslav G. Electrophoresis, 2007, 28: 3  

    31. [31]

      [31] Cao C X, Zhou S L, Qian Y T, et al. J Chromatogr A, 2001, 922: 283  

  • 加载中
    1. [1]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    2. [2]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    3. [3]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    4. [4]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    10. [10]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    14. [14]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    15. [15]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    16. [16]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    17. [17]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    18. [18]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    19. [19]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(0)
  • Abstract views(681)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return