Citation: PAN Jieli, HU Changfeng, WEI Shuangshuang, CHEN Jiao, ZHOU Jia. Exploring effect of cyclooxygenase-2 inhibitor on serum lipid profiles in collagen-induced arthritis model using shotgun lipidomics[J]. Chinese Journal of Chromatography, ;2016, 34(6): 550-557. doi: 10.3724/SP.J.1123.2016.03043 shu

Exploring effect of cyclooxygenase-2 inhibitor on serum lipid profiles in collagen-induced arthritis model using shotgun lipidomics

  • Corresponding author: ZHOU Jia, zhoujia_1990@163.com
  • Received Date: 29 March 2016

    Fund Project: Science and Technology Planning Project of Zhejiang Province No. 2015C37045National Natural Science Foundation of China No. 81403269Science Foundation of Zhejiang Chinese Medical University No. 2014ZY32Scientific and Technological Innovation Team Project of College of Basic Medical, Zhejiang Chinese Medical University No. JCIT2016-1National Basic Research Program of China("973" Program) No. 2014CB543001

  • Rheumatoid arthritis (RA) is an inflammatory disease leading to joint swollen, pain and even deformity. Cardiovascular disease (CVD) is regarded as a major cause of morbidity in patients. Chronic systemic inflammation in patients is an independent CVD risk factor. Cyclooxygenase-2 (COX-2) inhibitor, a commonly used drug in the treatment of RA, can increase the risk of CVD. Lipid metabolic disorder is highly correlated with the occurrence of CVD, thus we investigated the serum lipid changes caused by RA and drug treatment to help to elucidate the mechanism of CVD in RA. Collagen-induced arthritis (CIA) is employed as a model of RA. After modeling, COX-2 inhibitor-meloxicam was orally administrated for three weeks, and the serum lipid profiles were analyzed by the multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL). Totally 105 lipids were detected in serum, including 35 phosphatidylcholines (PCs), 18 lysophosphatidylcholines (LysoPCs), 15 phosphatidyl inositols (PIs), 3 phosphatidyl glycerols (PGs), 19 sphingomyelins (SMs) and 15 ceramides (Cers). In the principle component analysis, it was observed that the lipid profiles of CIA model rats were very different from those of the control rats, and the COX-2 inhibitor can improve the lipid metabolism partly. Further, ANOVA analysis revealed that 39 of the 105 identified lipids were up-regulated in CIA rats, including 7 PIs, 15 SMs, 5 Cers, 10 PCs and 2 LysoPCs. Most of these lipids were down-regulated under the treatment of COX-2 inhibitor. In addition, the five PCs and one LysoPC were abnormally regulated by the drug. The MDMS-SL discovered lipid disturbance in CIA model rats that might be related to risk factors of atherosclerosis; the COX-2 inhibitor can greatly repair the lipid disorder caused by modeling, while induce abnormal changes of some PCs and LysoPC which may cause side-effect.
  • 加载中
    1. [1]

      Avina-Zubieta J A, Choi H K, Sadatsafavi M, et al. Arthritis Rheum, 2008, 59(12):1690

    2. [2]

      Avina-Zubieta J A, Thomas J, Sadatsafavi M, et al. Ann Rheum Dis, 2012, 71(9):1524

    3. [3]

      Santos M J, Fonseca J E. Acta Reumatol Port, 2009, 34(4):590

    4. [4]

      Dessein P H, Joffe B I, Stanwix A E. J Rheumatol, 2003, 30(7):1403

    5. [5]

      McCoy J M, Wicks J R, Audoly L P. J Clin Invest, 2002, 110(5):651

    6. [6]

      Kearney P M, Baigent C, Godwin J, et al. BMJ, 2006, 332(7553):1302

    7. [7]

      García-Gómez C, Nolla J M, Valverde J, et al. J Rheumatol, 2009, 36(7):1365

    8. [8]

      Hinterwirth H, Stegemann C, Mayr M. Circ Cardiovasc Genet, 2014, 7(6):941

    9. [9]

      Stegemann C, Pechlaner R, Willeit P, et al. Circulation, 2014, 129(18):1821

    10. [10]

      Deedwania P. J Clin Hypertens (Greenwich), 2011, 13(1):52

    11. [11]

      Liu L, Wang M, Yang X, et al. Clin Chem, 2013, 59(9):1338

    12. [12]

      Yu X W, Wu Q, Lü W, et al. Chinese Journal of Chromatography, 2013, 31(7):691

    13. [13]

      He H B, Shi X Z, Chen J, et al. Chinese Journal of Chromatography, 2012, 30(3):245

    14. [14]

      Yang T Z, Luo P, Li Y L, et al. Chinese Journal of Chromatography, 2014, 32(2):126

    15. [15]

      Wang D, Sun C, Liu L, et al. Neurobiol Aging, 2012, 33(6):1057

    16. [16]

      Proitsi P, Kim M, Whiley L, et al. Transl Psychiatry, 2015, 5(1):e494

    17. [17]

      Kosinska M K, Liebisch G, Lochnit G, et al. Arthritis Rheum, 2013, 65(9):2323

    18. [18]

      Giera M, Ioan-Facsinay A, Toes R, et al. Biochim Biophys Acta, 2012, 1821(11):1415

    19. [19]

      Han X, Yang K, Gross R W. Mass Spectrom Rev, 2012, 31(1):134

    20. [20]

      Hu C, Wang Y, Fan Y, et al. AAPS J, 2015, 17(3):711

    21. [21]

      Kiebish M A, Yang K, Liu X, et al. J Lipid Res, 2013, 54(5):1312

    22. [22]

      Adamovich Y, Rousso-Noori L, Zwighaft Z, et al. Cell Metab, 2014, 19(2):319

    23. [23]

      Sewell G W, Hannun Y A, Han X, et al. Int J Biochem Cell B, 2012, 44(11):1839

    24. [24]

      Rosloniec E F, Cremer M, Kang A H, et al. Curr Protoc Immunol, 2010, 15:15.5.1

    25. [25]

      Yang K, Cheng H, Gross R W, et al. Anal Chem, 2009, 81(11):323

    26. [26]

      Hannun Y A, Obeid L M. Nat Rev Mol Cell Bio, 2008, 9:139

    27. [27]

      Sawai H, Domae N, Okazaki T. Curr Pharm Des, 2005, 11(19):2479

    28. [28]

      Kosinska M K, Liebisch G, Lochnit G, et al. PLoS ONE, 2014, 9(3):e91769

    29. [29]

      Kummerow F A, Cook L S, Wasowicz E, et al. J Nutr Biochem, 2001, 12(10):602

    30. [30]

      Haus J M, Kashyap S R, Kasumov T, et al. Diabetes, 2009, 58(2):337

    31. [31]

      Ghigo A, Damilano F, Braccini L, et al. Bioessays, 2010, 32(3):185

    32. [32]

      Rommel C, Camps M, Ji H. Nat Rev Immunol, 2007, 7(3):191

    33. [33]

      Kang A C, Huo Y, Qi L T. Chinese Journal of Arteriosclerosis, 2006, 14(12):1083

    34. [34]

      Liu G, Zheng M Q, Wang W, et al. Journal of Peking University:Health Sciences, 2011, 43(6):804

  • 加载中
    1. [1]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    2. [2]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    5. [5]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    6. [6]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    7. [7]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    8. [8]

      Yan Zhang Xiaoyan Cao Yiming Li Shuwei Xia Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027

    9. [9]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-0. doi: 10.3866/PKU.WHXB202308048

    10. [10]

      Dongcheng Liu Zhong Zhang Jinjun Tang Youjun Fan Xiaokun Li Xiulin Yang Ting Liu Xingcan Shen . Exploration and Practice of Practical Teaching System in the Context of Developing New Quality Productive Forces. University Chemistry, 2025, 40(12): 157-162. doi: 10.12461/PKU.DXHX202509064

    11. [11]

      Yinghao ZhangHuaxin LiuHanrui DingZhi ZhengWentao DengGuoqiang ZouLaiqiang XuHongshuai HouXiaobo Ji . The application of carbon dots in electrolytes of advanced batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100170-0. doi: 10.1016/j.actphy.2025.100170

    12. [12]

      Zhen Zhang Jie Liu Hongwei Kang Cuibing Bai Jitang Chen . Exploration of 3D Printing-Assisted Teaching of Chemical Engineering Principles Driven by New Quality Productive Forces. University Chemistry, 2026, 41(2): 21-27. doi: 10.12461/PKU.DXHX202501021

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    15. [15]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    16. [16]

      Jianan Fang Youhao Gu Zexuan Gui Laiying Zhang Jiawei Yan Ruming Yuan Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055

    17. [17]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    18. [18]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    19. [19]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

Metrics
  • PDF Downloads(0)
  • Abstract views(480)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return