Citation: LI Rong, BO Yanna, LU Junwen, LIN Qinbao, HUANG Zhiqiang, CHEN Lisi. Determination of 28 phthalate esters in baked foods by gas chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, ;2016, 34(5): 502-511. doi: 10.3724/SP.J.1123.2015.12035 shu

Determination of 28 phthalate esters in baked foods by gas chromatography-triple quadrupole mass spectrometry

  • Corresponding author: HUANG Zhiqiang, 
  • Received Date: 23 December 2015

    Fund Project: 国家科技支撑计划课题(2012BAK08B01) (2012BAK08B01)广东省省级科技计划项目(2014A040401011) (2014A040401011)国家质检总局科技计划项目(2015IK260) (2015IK260)中山市社会公益重大专项(2015B2295). (2015B2295)

  • An efficient method using gas chromatography-triple quadrupole mass spectrometry for the determination of 28 phthalate ester residues in bakery foods was established. The samples were extracted with ethyl acetate, and cleaned up with neutral alumina. The separation was performed on a TR-5MS capillary column (30 m×0.25 mm×0.25 μ m) by programmed temperature vaporization (PTV) with splitless mode. Meanwhile the identification and quantification were performed by GC-MS/MS in selected reaction monitoring (SRM) mode and using the internal standard method. The calibration curves of the 27 phthalate esters showed good linearities in the range of 0.05-10 mg/L, except diisononyl ortho-phthalate (DINP) which was in the range of 0.1-20 mg/L, with the correlation coefficients not less 0.9962. The limits of detection (LODs) were 0.1-9.8 μ g/kg and the limits of quantification (LOQs) were 0.4-32.6 μ g/kg. With the proposed method, the spiked recoveries were evaluated in four types of baked foods (bread, biscuits, cakes, stuffing) at low, medium and high concentrations. The results showed that the average recoveries of the 28 PAEs were in the range of 81.0%-117%, and the relative standard deviations (RSDs, n=6) were in the range of 1.3%-13.6%. The method was successfully applied in the investigation of the PAEs distribution in baked foods. The method is suitable for the determination of the 28 PAEs in baked foods with easy operation, high accuracy and precision.
  • 加载中
    1. [1]

      [1] Li X M, Wang J, Zhang Q H, et al. Chinese Journal of Chromatography, 2015, 33(11): 114 李晓敏, 王景, 张庆合, 等. 色谱, 2015, 33(11): 1147

    2. [2]

      [2] Guo Y. Anal Bioanal Chem, 2012, 404(9): 2539  

    3. [3]

      [3] Wang X Y, Lin X T, Ke H M, et al. Journal of Environment and Health, 2007, 24(9): 736 王小逸, 林兴桃, 客慧明, 等. 环境与健康杂志, 2007, 24(9): 736

    4. [4]

      [4] Liang J, Zhuang W E, Lin F, et al. Chinese Journal of Chromatography, 2014, 32(11): 1242 梁婧, 庄婉娥, 林芳, 等. 色谱, 2014, 32(11): 1242  

    5. [5]

      [5] Foster P M D. Inter J Andro, 2006, 29(1): 140  

    6. [6]

      [6] Zhao Y H, Wang X Y, Lin X T, et al. Journal of Environment and Health, 2010, 27(2): 184 赵雅辉, 王小逸, 林兴桃, 等. 环境与健康杂志, 2010, 27(2): 184

    7. [7]

      [7] Li Y S, Chen T Y, Huang B L, et al. Food & Machinery, 2012, 28(1): 105 李艳松, 陈铁英, 黄宝临, 等. 食品与机械, 2012, 28(1): 105

    8. [8]

      [8] Wang J, Li X M, Zhang Q H, et al. J Sep Sci, 2015, 38: 1700  

    9. [9]

      [9] Wu H Q, Zhu Z X, Huang X L, et al. Journal of Instrumental Analysis, 2011, 30(10): 1079 吴惠勤, 朱志鑫, 黄晓兰, 等. 分析测试学报, 2011, 30(10): 1079

    10. [10]

      [10] Lo Turco V, Di Bella G, Potorti A G, et al. Eur Food Res Technol, 2015, 240: 451  

    11. [11]

      [11] Zheng X H, Lin L Y, Fang E H, et al. Chinese Journal of Chromatography, 2012, 30(1): 27 郑向华, 林立毅, 方恩华, 等. 色谱, 2012, 30(1): 27

    12. [12]

      [12] Luo Y Z, Li Z Y, Liu Z H, et al. Journal of Analytical Science, 2014, 30(6): 890 罗跃中, 李忠英, 刘正华, 等. 分析科学学报, 2014, 30(6): 890

    13. [13]

      [13] Li X Y, Yang Y C, Cui X, et al. Anal Lett, 2015, 48(16): 2544  

    14. [14]

      [14] Li Y Y, Ling Y, Guo H N, et al. Journal of Instrumental Analysis, 2013, 32(4): 408 李玉玉, 凌云, 郭浩楠, 等. 分析测试学报, 2013, 32(4): 408

    15. [15]

      [15] Zhang F, Li Z H, Zhang Y, et al. Chinese Journal of Chromatography, 2014, 32(7): 735 张帆, 李忠海, 张莹, 等. 色谱, 2014, 32(7): 735  

    16. [16]

      [16] Zhu L P, Zhu T, Ma Y P, et al. Chinese Journal of Analytical Chemistry, 2013, 41(7): 1019 朱莉萍, 朱涛, 马运平, 等. 分析化学, 2013, 41(7): 1019

    17. [17]

      [17] Lin J L, Chen W X, Zhu H C, et al. J Dairy Sci, 2015, 98(12): 8278  

    18. [18]

      [18] Sun X, Qi L, Qin Y T, et al. Chinese Journal of Chromatography, 2014, 32(11): 1260 孙欣, 齐莉, 秦延亭, 等. 色谱, 2014, 32(11): 1260  

    19. [19]

      [19] Lu L, Gong X, Feng Y L. Chinese Journal of Chromatography, 2014, 32(11): 1286 芦丽, 宫旭, 冯有龙. 色谱, 2014, 32(11): 1286  

    20. [20]

      [20] Zhang L, Shang C X, Sun C. Chinese Journal of Chromatography, 2014, 32(6): 653 张莉, 尚楚翔, 孙成. 色谱, 2014, 32(6): 653  

    21. [21]

      [21] Cariou R, Larvor F, Monteau F, et al. Food Chem, 2016, 196: 211  

    22. [22]

      [22] Shi Y M, Xu D M, Zhou Y, et al. Journal of Instrumental Analysis, 2011, 30(12): 1372 施雅梅, 徐敦明, 周昱, 等. 分析测试学报, 2011, 30(12): 1372

    23. [23]

      [23] Wang J, Zhang L, Xin D Q, et al. J Food Sci, 2015, 80(11): 2452  

    24. [24]

      [24] Zhang C Y, Wang H, Zhang X H, et al. Chinese Journal of Chromatography, 2011, 29(12): 1236 张春雨, 王辉, 张晓辉, 等. 色谱, 2011, 29(12): 1236

    25. [25]

      [25] Zhang L, Wu Q, Liang J H, et al. Food Science, 2012, 33(20): 184 张磊, 吴青, 梁健华, 等. 食品科学, 2012, 33(20): 184

    26. [26]

      [26] Liu H H, Huang X Q, Wang H, et al. Modern Preventive Medicine, 2008, 35(1): 119 刘红河, 黄晓群, 王晖, 等. 现代预防医学, 2008, 35(1): 119

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    4. [4]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    7. [7]

      Linghua Chen . 基于双联动“三学”模式的食品专业分析化学教学改革. University Chemistry, 2025, 40(8): 78-91. doi: 10.12461/PKU.DXHX202409095

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    11. [11]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    12. [12]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    13. [13]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    14. [14]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    15. [15]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    16. [16]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    17. [17]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    18. [18]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    19. [19]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    20. [20]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(1)
  • Abstract views(413)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return