Citation: YANG Ge, WEI Qiang, ZHAO Xinying, QU Feng. Research advances of aptamers selection for protein targets[J]. Chinese Journal of Chromatography, ;2016, 34(4): 370-381. doi: 10.3724/SP.J.1123.2015.12014 shu

Research advances of aptamers selection for protein targets

  • Corresponding author: QU Feng, 
  • Received Date: 14 December 2015

    Fund Project: 国家自然科学基金(21175011,21375008) (21175011,21375008)国家"973"项目(2012CB910603). (2012CB910603)

  • Aptamers are selected through systematic evolution of ligands by exponential enrichment (SELEX), and are artificially synthesized single-stranded DNA or RNA with high affinity and specificity against a wide variety of target molecules. Since some functional proteins play the key role in life process, aptamers against proteins have attracted great attention in the last decade, and are used in basic research and wide applications. The performance of aptamers depends on their affinity, specificity and stability. In recent years, many SELEX methods have been developed to enhance the properties of aptamers, improve selection efficiency and reduce cost. The main procedure of SELEX includes the isolation of target-aptamer compound, optimization the random ssDNA library, enrichment of ssDNA and the analysis and characterization of selected aptamers. In this review, we summarize the developments of aptamer selection methods for protein targets since 2005, discuss their shortcomings and limitations, and introduce the optimization of ssDNA library, aptamer sequence character and analytical methods for their affinity analysis.
  • 加载中
    1. [1]

      [1] Lesser B H, Comings D E. BBA-Nucleic Acids and Protein Synthesis, 1978, 521(1):117

    2. [2]

      [2] Craig N L. Annu Rev Genet, 1988, 22(1):77  

    3. [3]

      [3] Pabo C O, Sauer R T. Annu Rev Biochem, 1992, 61(1):1053  

    4. [4]

      [4] Pingoud A, Jeltsch A. Eur J Biochem, 1997, 246(1):1  

    5. [5]

      [5] Bashkin J K, Mcbeath R J, Modak A S, et al. J Org Chem, 1991, 56(9):3168  

    6. [6]

      [6] Mckeague M, Mcconnell E M, Cruz-Toledo J, et al. J Mol Evol, 2015, 81:150  

    7. [7]

      [7] Liu K, Lin B, Lan X. J Cell Biochem, 2013, 114(2):250  

    8. [8]

      [8] Darmostuk M, Rimpelová S, Gbelcová H, et al. Biotechnol Adv, 2015, 33(6):1141  

    9. [9]

      [9] Nilsen-Hamilton M. J Am Chem Soc, 2009, 131(33):12018

    10. [10]

      [10] Sevilimedu A, Shi H, Lis J T. Nucleic Acids Res, 2008, 36(9):3118  

    11. [11]

      [11] Burmeister P E, Lewis S D, Silva R F, et al. Chem Biol, 2005, 12(1):25  

    12. [12]

      [12] Williams B A, Lin L, Lindsay S M, et al. J Am Chem Soc, 2009, 131(18):6330  

    13. [13]

      [13] Travascio P, Li Y, Sen D. Chem Biol, 1998, 5(9):505  

    14. [14]

      [14] Qiao L, Lv B, Feng X, et al. J Biotechnol, 2015, 203:68  

    15. [15]

      [15] Zaloudik J, Li W, Jacob L, et al. Cancer Gene Ther, 2002, 9(4):382  

    16. [16]

      [16] Wang J, Rudzinski J F, Gong Q, et al. PLoS One, 2012, 7(8):e43940

    17. [17]

      [17] Huang C-J, Lin H-I, Shiesh S-C, et al. Biosens Bioelectron, 2010, 25(7):1761  

    18. [18]

      [18] Gong Q, Wang J, Ahmad K M, et al. Anal Chem, 2012, 84(12):5365  

    19. [19]

      [19] Latulippe D R, Szeto K, Ozer A, et al. Anal Chem, 2013, 85(6):3417  

    20. [20]

      [20] Szeto K, Reinholt S J, Duarte F M, et al. Anal Bioanal Chem, 2014, 406(11):2727  

    21. [21]

      [21] Pagano J M, Kwak H, Waters C T, et al. PLoS Genet, 2014, 10(1):e004090

    22. [22]

      [22] Berezovski M, Musheev M, Drabovich A, et al. J Am Chem Soc, 2006, 128(5):1410  

    23. [23]

      [23] Cho M, Oh S S, Nie J, et al. Proc Natl Acad Sci USA, 2013, 110(46):18460  

    24. [24]

      [24] Cho M, Xiao Y, Nie J, et al. Proc Natl Acad Sci USA, 2010, 107(35):15373  

    25. [25]

      [25] Oh S S, Ahmad K M, Cho M, et al. Anal Chem, 2011, 83(17):6883  

    26. [26]

      [26] Ahmad K M, Oh S S, Kim S, et al. PLoS One, 2011, 6(11):e27051

    27. [27]

      [27] Huang C-J, Lin H-I, Shiesh S-C, et al. Biosens Bioelectron, 2012, 35(1):50  

    28. [28]

      [28] Lai H-C, Wang C-H, Liou T-M, et al. Lab Chip, 2014, 14(12):2002  

    29. [29]

      [29] Lou X, Qian J, Xiao Y, et al. Proc Natl Acad Sci USA, 2009, 106(9):2989  

    30. [30]

      [30] Qian J, Lou X, Zhang Y, et al. Anal Chem, 2009, 81(13):5490  

    31. [31]

      [31] Ahn J Y, Jo M, Park S, et al. MCT, 2009, 5(3):87

    32. [32]

      [32] Giljohann D A, Seferos D S, Prigodich A E, et al. J Am Chem Soc, 2009, 131(6):2072  

    33. [33]

      [33] Takahashi T, Tada K, Mihara H. Mol Biosyst, 2009, 5(9):986  

    34. [34]

      [34] Tsukakoshi K, Abe K, Sode K, et al. Anal Chem, 2012, 84(13):5542  

    35. [35]

      [35] Liu Y, Wang C, Li F, et al. Anal Chem, 2012, 84(18):7603  

    36. [36]

      [36] Zhao Q, Li X-F, Le X C. Anal Chem, 2008, 80(10):3915  

    37. [37]

      [37] Nie H, Chen Y, Lü C, et al. Anal Chem, 2013, 85(17):8277  

    38. [38]

      [38] Rajendran M, Ellington A D. Nucleic Acids Res, 2003, 31(19):5700  

    39. [39]

      [39] Nutiu R, Li Y. Angew Chem Int Ed Engl, 2005, 117(7):1085  

    40. [40]

      [40] Oh S S, Plakos K, Lou X, et al. Proc Natl Acad Sci USA, 2010, 107(32):14053  

    41. [41]

      [41] Wang J, Gong Q, Maheshwari N, et al. Angew Chem Int Ed, 2014, 53(19):4796  

    42. [42]

      [42] Zhu Z, Song Y, Li C, et al. Anal Chem, 2014, 86(12):5881  

    43. [43]

      [43] Blake C M, Sullenger B A, Lawrence D A, et al. Oligonucleotides, 2009, 19(2):117  

    44. [44]

      [44] Schrand B, Berezhnoy A, Brenneman R, et al. Oncoimmunology, 2015, 4(3):e970918

    45. [45]

      [45] Zhang W Y, Zhang W, Liu Z, et al. Anal Chem, 2011, 84(1):350

    46. [46]

      [46] Hu J, Wu J, Li C, et al. Chembiochem, 2011, 12(3):424  

    47. [47]

      [47] Stubbs S H, Conrad N K. Methods Enzymol, 2014, 539:67  

    48. [48]

      [48] Gopinath S C, Misono T S, Kawasaki K, et al. J Gen Virol, 2006, 87(3):479  

    49. [49]

      [49] Smith D, Kirschenheuter G P, Charlton J, et al. Chem Biol, 1995, 2(11):741  

    50. [50]

      [50] Mendonsa S D, Bowser M T. Anal Chem, 2004, 76(18):5387  

    51. [51]

      [51] Mendonsa S D, Bowser M T. Proc Natl Acad Sci USA, 2005, 127(26):9382

    52. [52]

      [52] Mosing R K, Mendonsa S D, Bowser M T. Anal Chem, 2005, 77(19):6107  

    53. [53]

      [53] Tang J, Xie J, Shao N, et al. Electrophoresis, 2006, 27(7):1303  

    54. [54]

      [54] Mallikaratchy P, Stahelin R V, Cao Z, et al. Chem Commun, 2006, 30:3229

    55. [55]

      [55] Cella L N, Sanchez P, Zhong W, et al. Anal Chem, 2010, 82(5):2042  

    56. [56]

      [56] Yu X, Yu Y. Appl Biochem Biotechnol, 2014, 173(8):2019  

    57. [57]

      [57] Tok J, Lai J, Leung T, et al. Electrophoresis, 2010, 31(12):2055  

    58. [58]

      [58] Berezovski M V, Musheev M U, Drabovich A P, et al. Nat Protoc, 2006, 1(3):1359  

    59. [59]

      [59] Ashley J, Ji K, Li S F. Electrophoresis, 2012, 33(17):2783  

    60. [60]

      [60] Wooákim D, Bockágu M. Chem Commun, 2012, 48(15):2071  

    61. [61]

      [61] Jing M, Bowser M T. Lab Chip, 2011, 11(21):3703  

    62. [62]

      [62] Bompiani K, Monroe D, Church F, et al. J Thromb Haemost, 2012, 10(5):870  

    63. [63]

      [63] Sakai H, Ikeda Y, Honda T, et al. J Mol Cell Cardiol, 2014, 48(3):1

    64. [64]

      [64] Ostroff R, Foreman T, Keeney T R, et al. J Proteomics, 2010, 73(3):649  

    65. [65]

      [65] Kuwahara M, Obika S. Artif DNA PNA XNA, 2013, 4(2):39  

    66. [66]

      [66] Förster C, Zydek M, Rothkegel M, et al. Biochem Bioph Res Co, 2012, 419(1):60  

    67. [67]

      [67] Elle I C, Karlsen K K, Terp M G, et al. Mol Biosyst, 2015, 11(5):1260  

    68. [68]

      [68] Jarosch F, Buchner K, Klussmann S. Nucleic Acids Res, 2006, 34(12):e86

    69. [69]

      [69] Pan W, Clawson G A. Methods Mol Biol, 2010, 629(41):367

    70. [70]

      [70] Lai Y-T, Destefano J J. Anal Biochem, 2011, 414(2):246  

    71. [71]

      [71] Eaton R M, Shallcross J A, Mael L E, et al. Anal Bioanal Chem, 2015, 407(23):1

    72. [72]

      [72] Leva S, Lichte A, Burmeister J, et al. Chem Biol, 2002, 9(3):351  

    73. [73]

      [73] Helmling S, Maasch C, Eulberg D, et al. Nat Biotechnol, 2004, 101(36):13174

    74. [74]

      [74] Purschke W G, Radtke F, Kleinjung F, et al. Nucleic Acids Res, 2003, 31(12):3027  

    75. [75]

      [75] Szeitner Z, Lautner G, Nagy S K, et al. Chem Commun, 2014, 50(51):6801  

    76. [76]

      [76] Feng H, Beck J, Nassal M, et al. PLoS One, 2011, 6(11):e27862

    77. [77]

      [77] Porrua O, Hobor F, Boulay J, et al. EMBO J, 2012, 31(19):3935  

    78. [78]

      [78] Mi J, Liu Y, Rabbani Z N, et al. Nat Chem Biol, 2010, 6(1):22  

    79. [79]

      [79] Gold L, Ayers D, Bertino J, et al. PLoS One, 2010, 5(12):e15004

    80. [80]

      [80] Clark E, Fuller-Pace F, Elliott D, et al. Biochem Soc Trans, 2008, 36(3):546  

    81. [81]

      [81] Gopinath S C B. Anal Bioanal Chem, 2007, 387(1):171

    82. [82]

      [82] Thiel W H, Bair T, Peek A S, et al. PLoS One, 2012, 7(9):e43836

    83. [83]

      [83] Layzer J M, Sullenger B A. Oligonucleotides, 2007, 17(1):1  

    84. [84]

      [84] Nitsche A, Kurth A, Dunkhorst A, et al. BMC Biotechnol, 2007, 7(1):48  

    85. [85]

      [85] Cruz-Toledo J, Mckeague M, Zhang X, et al. Database (Oxford), 2012, 2012(9):bas006

    86. [86]

      [86] Stoltenburg R, Nikolaus N, Strehlitz B. J Anal Methods Chem, 2012, 2012(1):155

    87. [87]

      [87] Kimoto M, Yamashige R, Matsunaga K-I, et al. Nat Biotechnol, 2013, 31(5):453  

    88. [88]

      [88] Sefah K, Yang Z, Bradley K M, et al. Nat Biotechnol, 2014, 111(4):1449

    89. [89]

      [89] Yang Z, Durante M, Glushakova L G, et al. Anal Chem, 2013, 85(9):4705  

    90. [90]

      [90] Klu β mann S, Nolte A, Bald R, et al. Nat Biotechnol, 1996, 14(9):1112  

    91. [91]

      [91] Ellington A D, Szostak J W. Nature, 1990, 346(6287):818  

    92. [92]

      [92] Keefe A D, Cload S T. Curr Opin Chem Biol, 2008, 12(4):448  

    93. [93]

      [93] Crouzier L, Dubois C, Edwards S L, et al. PLoS One, 2012, 7(4):e35990

    94. [94]

      [94] Pinheiro V B, Taylor A I, Cozens C, et al. Science, 2012, 336(6079):341  

    95. [95]

      [95] Ostroff R M, Bigbee W L, Franklin W, et al. PLoS One, 2010, 5(12):e15003

    96. [96]

      [96] Cruz-Aguado J A, Penner G. J Agric Food Chem, 2008, 56(22):10456  

    97. [97]

      [97] Papapanagiotou I, Streeter S, Cary P, et al. Nucleic Acids Res, 2007, 35(8):2643  

    98. [98]

      [98] Romaniuk P. J Biol Chem, 1990, 265(29):17593

    99. [99]

      [99] Bock C, Coleman M, Collins B, et al. Proteomics, 2004, 4(3):609  

    100. [100]

      [100] Kensch O, Connolly B A, Steinhoff H-J, et al. J Biol Chem, 2000, 275(24):18271  

    101. [101]

      [101] Gaillard C, Strauss F. BMC Mol Biol, 2000, 1(1):1  

    102. [102]

      [102] Jaouen S, De Koning L, Gaillard C, et al. J Mol Biol, 2005, 353(4):822  

    103. [103]

      [103] Drabovich A P, Berezovski M, Okhonin V, et al. Anal Chem, 2006, 78(9):3171  

    104. [104]

      [104] Oravcova J, Bo B, Lindner W. J Chromatogr B Biomed Sci Appl, 1996, 677(1):1  

    105. [105]

      [105] Deng Q, German I, Buchanan D, et al. Anal Chem, 2001, 73(22):5415  

    106. [106]

      [106] Li Y, Lee H J, Corn R M. Nucleic Acids Res, 2006, 34(22):6416  

    107. [107]

      [107] Chang C-C, Wu J-Y, Chien C-W, et al. Anal Chem, 2003, 75(22):6177  

    108. [108]

      [108] Potty A S, Kourentzi K, Fang H, et al. Biopolymers, 2009, 91(2):145  

    109. [109]

      [109] Gokulrangan G, Unruh J R, Holub D F, et al. Anal Chem, 2005, 77(7):1963  

    110. [110]

      [110] Del Toro M, Gargallo R, Eritja R, et al. Anal Biochem, 2008, 379(1):8  

    111. [111]

      [111] Müller M, Weigand J E, Weichenrieder O, et al. Nucleic Acids Res, 2006, 34(9):2607  

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    4. [4]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    8. [8]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    14. [14]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    15. [15]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    18. [18]

      Changwei Dun Xijun Zhang Qianyi Zhao Yuming Guo . Promoting the Construction of the Chemical Experiment Teaching Center and Forging a New Era in Cultivating Innovative Talents. University Chemistry, 2024, 39(7): 211-217. doi: 10.12461/PKU.DXHX202405139

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

Metrics
  • PDF Downloads(0)
  • Abstract views(420)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return