Citation:
YANG Ge, WEI Qiang, ZHAO Xinying, QU Feng. Research advances of aptamers selection for protein targets[J]. Chinese Journal of Chromatography,
;2016, 34(4): 370-381.
doi:
10.3724/SP.J.1123.2015.12014
-
Aptamers are selected through systematic evolution of ligands by exponential enrichment (SELEX), and are artificially synthesized single-stranded DNA or RNA with high affinity and specificity against a wide variety of target molecules. Since some functional proteins play the key role in life process, aptamers against proteins have attracted great attention in the last decade, and are used in basic research and wide applications. The performance of aptamers depends on their affinity, specificity and stability. In recent years, many SELEX methods have been developed to enhance the properties of aptamers, improve selection efficiency and reduce cost. The main procedure of SELEX includes the isolation of target-aptamer compound, optimization the random ssDNA library, enrichment of ssDNA and the analysis and characterization of selected aptamers. In this review, we summarize the developments of aptamer selection methods for protein targets since 2005, discuss their shortcomings and limitations, and introduce the optimization of ssDNA library, aptamer sequence character and analytical methods for their affinity analysis.
-
-
-
[1]
[1] Lesser B H, Comings D E. BBA-Nucleic Acids and Protein Synthesis, 1978, 521(1):117
- [2]
- [3]
- [4]
-
[5]
[5] Bashkin J K, Mcbeath R J, Modak A S, et al. J Org Chem, 1991, 56(9):3168
-
[6]
[6] Mckeague M, Mcconnell E M, Cruz-Toledo J, et al. J Mol Evol, 2015, 81:150
- [7]
-
[8]
[8] Darmostuk M, Rimpelová S, Gbelcová H, et al. Biotechnol Adv, 2015, 33(6):1141
-
[9]
[9] Nilsen-Hamilton M. J Am Chem Soc, 2009, 131(33):12018
-
[10]
[10] Sevilimedu A, Shi H, Lis J T. Nucleic Acids Res, 2008, 36(9):3118
-
[11]
[11] Burmeister P E, Lewis S D, Silva R F, et al. Chem Biol, 2005, 12(1):25
-
[12]
[12] Williams B A, Lin L, Lindsay S M, et al. J Am Chem Soc, 2009, 131(18):6330
- [13]
-
[14]
[14] Qiao L, Lv B, Feng X, et al. J Biotechnol, 2015, 203:68
-
[15]
[15] Zaloudik J, Li W, Jacob L, et al. Cancer Gene Ther, 2002, 9(4):382
-
[16]
[16] Wang J, Rudzinski J F, Gong Q, et al. PLoS One, 2012, 7(8):e43940
-
[17]
[17] Huang C-J, Lin H-I, Shiesh S-C, et al. Biosens Bioelectron, 2010, 25(7):1761
-
[18]
[18] Gong Q, Wang J, Ahmad K M, et al. Anal Chem, 2012, 84(12):5365
-
[19]
[19] Latulippe D R, Szeto K, Ozer A, et al. Anal Chem, 2013, 85(6):3417
-
[20]
[20] Szeto K, Reinholt S J, Duarte F M, et al. Anal Bioanal Chem, 2014, 406(11):2727
-
[21]
[21] Pagano J M, Kwak H, Waters C T, et al. PLoS Genet, 2014, 10(1):e004090
-
[22]
[22] Berezovski M, Musheev M, Drabovich A, et al. J Am Chem Soc, 2006, 128(5):1410
-
[23]
[23] Cho M, Oh S S, Nie J, et al. Proc Natl Acad Sci USA, 2013, 110(46):18460
-
[24]
[24] Cho M, Xiao Y, Nie J, et al. Proc Natl Acad Sci USA, 2010, 107(35):15373
-
[25]
[25] Oh S S, Ahmad K M, Cho M, et al. Anal Chem, 2011, 83(17):6883
-
[26]
[26] Ahmad K M, Oh S S, Kim S, et al. PLoS One, 2011, 6(11):e27051
-
[27]
[27] Huang C-J, Lin H-I, Shiesh S-C, et al. Biosens Bioelectron, 2012, 35(1):50
-
[28]
[28] Lai H-C, Wang C-H, Liou T-M, et al. Lab Chip, 2014, 14(12):2002
-
[29]
[29] Lou X, Qian J, Xiao Y, et al. Proc Natl Acad Sci USA, 2009, 106(9):2989
-
[30]
[30] Qian J, Lou X, Zhang Y, et al. Anal Chem, 2009, 81(13):5490
-
[31]
[31] Ahn J Y, Jo M, Park S, et al. MCT, 2009, 5(3):87
-
[32]
[32] Giljohann D A, Seferos D S, Prigodich A E, et al. J Am Chem Soc, 2009, 131(6):2072
-
[33]
[33] Takahashi T, Tada K, Mihara H. Mol Biosyst, 2009, 5(9):986
-
[34]
[34] Tsukakoshi K, Abe K, Sode K, et al. Anal Chem, 2012, 84(13):5542
-
[35]
[35] Liu Y, Wang C, Li F, et al. Anal Chem, 2012, 84(18):7603
- [36]
-
[37]
[37] Nie H, Chen Y, Lü C, et al. Anal Chem, 2013, 85(17):8277
-
[38]
[38] Rajendran M, Ellington A D. Nucleic Acids Res, 2003, 31(19):5700
-
[39]
[39] Nutiu R, Li Y. Angew Chem Int Ed Engl, 2005, 117(7):1085
-
[40]
[40] Oh S S, Plakos K, Lou X, et al. Proc Natl Acad Sci USA, 2010, 107(32):14053
-
[41]
[41] Wang J, Gong Q, Maheshwari N, et al. Angew Chem Int Ed, 2014, 53(19):4796
-
[42]
[42] Zhu Z, Song Y, Li C, et al. Anal Chem, 2014, 86(12):5881
-
[43]
[43] Blake C M, Sullenger B A, Lawrence D A, et al. Oligonucleotides, 2009, 19(2):117
-
[44]
[44] Schrand B, Berezhnoy A, Brenneman R, et al. Oncoimmunology, 2015, 4(3):e970918
-
[45]
[45] Zhang W Y, Zhang W, Liu Z, et al. Anal Chem, 2011, 84(1):350
- [46]
- [47]
-
[48]
[48] Gopinath S C, Misono T S, Kawasaki K, et al. J Gen Virol, 2006, 87(3):479
-
[49]
[49] Smith D, Kirschenheuter G P, Charlton J, et al. Chem Biol, 1995, 2(11):741
- [50]
-
[51]
[51] Mendonsa S D, Bowser M T. Proc Natl Acad Sci USA, 2005, 127(26):9382
-
[52]
[52] Mosing R K, Mendonsa S D, Bowser M T. Anal Chem, 2005, 77(19):6107
-
[53]
[53] Tang J, Xie J, Shao N, et al. Electrophoresis, 2006, 27(7):1303
-
[54]
[54] Mallikaratchy P, Stahelin R V, Cao Z, et al. Chem Commun, 2006, 30:3229
-
[55]
[55] Cella L N, Sanchez P, Zhong W, et al. Anal Chem, 2010, 82(5):2042
- [56]
-
[57]
[57] Tok J, Lai J, Leung T, et al. Electrophoresis, 2010, 31(12):2055
-
[58]
[58] Berezovski M V, Musheev M U, Drabovich A P, et al. Nat Protoc, 2006, 1(3):1359
-
[59]
[59] Ashley J, Ji K, Li S F. Electrophoresis, 2012, 33(17):2783
- [60]
- [61]
-
[62]
[62] Bompiani K, Monroe D, Church F, et al. J Thromb Haemost, 2012, 10(5):870
-
[63]
[63] Sakai H, Ikeda Y, Honda T, et al. J Mol Cell Cardiol, 2014, 48(3):1
-
[64]
[64] Ostroff R, Foreman T, Keeney T R, et al. J Proteomics, 2010, 73(3):649
- [65]
-
[66]
[66] Förster C, Zydek M, Rothkegel M, et al. Biochem Bioph Res Co, 2012, 419(1):60
-
[67]
[67] Elle I C, Karlsen K K, Terp M G, et al. Mol Biosyst, 2015, 11(5):1260
-
[68]
[68] Jarosch F, Buchner K, Klussmann S. Nucleic Acids Res, 2006, 34(12):e86
-
[69]
[69] Pan W, Clawson G A. Methods Mol Biol, 2010, 629(41):367
- [70]
-
[71]
[71] Eaton R M, Shallcross J A, Mael L E, et al. Anal Bioanal Chem, 2015, 407(23):1
-
[72]
[72] Leva S, Lichte A, Burmeister J, et al. Chem Biol, 2002, 9(3):351
-
[73]
[73] Helmling S, Maasch C, Eulberg D, et al. Nat Biotechnol, 2004, 101(36):13174
-
[74]
[74] Purschke W G, Radtke F, Kleinjung F, et al. Nucleic Acids Res, 2003, 31(12):3027
-
[75]
[75] Szeitner Z, Lautner G, Nagy S K, et al. Chem Commun, 2014, 50(51):6801
-
[76]
[76] Feng H, Beck J, Nassal M, et al. PLoS One, 2011, 6(11):e27862
-
[77]
[77] Porrua O, Hobor F, Boulay J, et al. EMBO J, 2012, 31(19):3935
-
[78]
[78] Mi J, Liu Y, Rabbani Z N, et al. Nat Chem Biol, 2010, 6(1):22
-
[79]
[79] Gold L, Ayers D, Bertino J, et al. PLoS One, 2010, 5(12):e15004
-
[80]
[80] Clark E, Fuller-Pace F, Elliott D, et al. Biochem Soc Trans, 2008, 36(3):546
-
[81]
[81] Gopinath S C B. Anal Bioanal Chem, 2007, 387(1):171
-
[82]
[82] Thiel W H, Bair T, Peek A S, et al. PLoS One, 2012, 7(9):e43836
-
[83]
[83] Layzer J M, Sullenger B A. Oligonucleotides, 2007, 17(1):1
-
[84]
[84] Nitsche A, Kurth A, Dunkhorst A, et al. BMC Biotechnol, 2007, 7(1):48
-
[85]
[85] Cruz-Toledo J, Mckeague M, Zhang X, et al. Database (Oxford), 2012, 2012(9):bas006
-
[86]
[86] Stoltenburg R, Nikolaus N, Strehlitz B. J Anal Methods Chem, 2012, 2012(1):155
-
[87]
[87] Kimoto M, Yamashige R, Matsunaga K-I, et al. Nat Biotechnol, 2013, 31(5):453
-
[88]
[88] Sefah K, Yang Z, Bradley K M, et al. Nat Biotechnol, 2014, 111(4):1449
-
[89]
[89] Yang Z, Durante M, Glushakova L G, et al. Anal Chem, 2013, 85(9):4705
-
[90]
[90] Klu β mann S, Nolte A, Bald R, et al. Nat Biotechnol, 1996, 14(9):1112
-
[91]
[91] Ellington A D, Szostak J W. Nature, 1990, 346(6287):818
-
[92]
[92] Keefe A D, Cload S T. Curr Opin Chem Biol, 2008, 12(4):448
-
[93]
[93] Crouzier L, Dubois C, Edwards S L, et al. PLoS One, 2012, 7(4):e35990
-
[94]
[94] Pinheiro V B, Taylor A I, Cozens C, et al. Science, 2012, 336(6079):341
-
[95]
[95] Ostroff R M, Bigbee W L, Franklin W, et al. PLoS One, 2010, 5(12):e15003
-
[96]
[96] Cruz-Aguado J A, Penner G. J Agric Food Chem, 2008, 56(22):10456
-
[97]
[97] Papapanagiotou I, Streeter S, Cary P, et al. Nucleic Acids Res, 2007, 35(8):2643
-
[98]
[98] Romaniuk P. J Biol Chem, 1990, 265(29):17593
-
[99]
[99] Bock C, Coleman M, Collins B, et al. Proteomics, 2004, 4(3):609
-
[100]
[100] Kensch O, Connolly B A, Steinhoff H-J, et al. J Biol Chem, 2000, 275(24):18271
- [101]
-
[102]
[102] Jaouen S, De Koning L, Gaillard C, et al. J Mol Biol, 2005, 353(4):822
-
[103]
[103] Drabovich A P, Berezovski M, Okhonin V, et al. Anal Chem, 2006, 78(9):3171
-
[104]
[104] Oravcova J, Bo B, Lindner W. J Chromatogr B Biomed Sci Appl, 1996, 677(1):1
-
[105]
[105] Deng Q, German I, Buchanan D, et al. Anal Chem, 2001, 73(22):5415
-
[106]
[106] Li Y, Lee H J, Corn R M. Nucleic Acids Res, 2006, 34(22):6416
-
[107]
[107] Chang C-C, Wu J-Y, Chien C-W, et al. Anal Chem, 2003, 75(22):6177
-
[108]
[108] Potty A S, Kourentzi K, Fang H, et al. Biopolymers, 2009, 91(2):145
-
[109]
[109] Gokulrangan G, Unruh J R, Holub D F, et al. Anal Chem, 2005, 77(7):1963
-
[110]
[110] Del Toro M, Gargallo R, Eritja R, et al. Anal Biochem, 2008, 379(1):8
-
[111]
[111] Müller M, Weigand J E, Weichenrieder O, et al. Nucleic Acids Res, 2006, 34(9):2607
-
[1]
-
-
-
[1]
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
-
[2]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[3]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[4]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[5]
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
-
[6]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[7]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[8]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[9]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[10]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[11]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[12]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[13]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
-
[14]
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
-
[15]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[16]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[17]
Zhongbin Pan , Shijie Huang , Yunjie Luo , Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040
-
[18]
Changwei Dun , Xijun Zhang , Qianyi Zhao , Yuming Guo . Promoting the Construction of the Chemical Experiment Teaching Center and Forging a New Era in Cultivating Innovative Talents. University Chemistry, 2024, 39(7): 211-217. doi: 10.12461/PKU.DXHX202405139
-
[19]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[20]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(420)
- HTML views(58)