Citation: XU Xu, XIAO Yuancan, GENG Dandan, PI Li, DONG Qi, HU Fengzu. Simultaneous determination of 16 sulfonamide residues in beef by high performance liquid chromatography-fluorescence detection with online post-column derivatization[J]. Chinese Journal of Chromatography, ;2016, 34(4): 422-428. doi: 10.3724/SP.J.1123.2015.11020 shu

Simultaneous determination of 16 sulfonamide residues in beef by high performance liquid chromatography-fluorescence detection with online post-column derivatization

  • Corresponding author: XIAO Yuancan, 
  • Received Date: 12 November 2015

    Fund Project: 中国科学院仪器功能开发技术创新项目(Ig201308) (Ig201308)中国科学院知识创新工程重要方向项目(KSCX2-EW-J-26) (KSCX2-EW-J-26)青海省科技计划项目(2015-ZL-Y23) (2015-ZL-Y23)青海省科技平台建设项目(2012-T-Y19). (2012-T-Y19)

  • In this study, we investigated the effects of the four kinds of derivatization reagents, including fluorescamine, o-phthaladehyde, fluorescein isothiocyanate isomer and 2, 3-naphthalenedicarboxaldehyde. A high performance liquid chromatography with fluorescence detection method for the rapid determination of 16 sulfonamide residues in beef was developed by using improved QuEChERS method for sample pretreatment and fluorescamine for online post-column derivatization. The beef samples were extracted with acetonitrile containing 1%(v/v) acetic acid, cleaned-up by QuEChERS method, injected for online post-column derivatization with fluorescamine, and then analysed with fluorescence detection. Under the optimized conditions of QuEChERS and chromatography, the 16 sulfonamide residues showed good linearities in the range of 0.024-2.533 mg/L with the correlation coefficients (r) higher than 0.992. The limits of detection of the method were 1.6 to 8.2 μg/kg. The average recoveries of the 16 sulfonamide residues were in the range of 66.6%-109.5% with the relative standard deviations from 0.9% to 9.9%. The method has the advantages of rapidity, simplicity, high sensitivity and better purification effect. It is suitable for the rapid determination of the sulfonamide residues in beef.
  • 加载中
    1. [1]

      [1] Baran W, Adamek E, Ziemiańska J, et al. J Hazard Mater, 2011, 196:1  

    2. [2]

      [2] Zhao H X, Liu H P, Yan Z Y. Chinese Journal of Chromatography, 2014, 32(3):294 赵海香, 刘海萍, 闫早婴. 色谱, 2014, 32(3):294  

    3. [3]

      [3] Abdallah H, Arnaudguilhem C, Jaber F, et al. J Chromatogr A, 2014, 1355:61  

    4. [4]

      [4] Cheng G D, Wu X H, Jin Z, et al. Chinese Journal of Chromatography, 2015, 33(8):892 程国栋, 吴小慧, 金珠, 等. 色谱, 2015, 33(8):892  

    5. [5]

      [5] Nebot C, Regal P, Miranda J, et al. J Chromatogr Sci, 2012, 50:414  

    6. [6]

      [6] Huang D M, Huang X Y, Gu R R, et al. Chinese Journal of Chromatography, 2014, 32(8):874 黄冬梅, 黄宣运, 顾润润, 等. 色谱, 2014, 32(8):874  

    7. [7]

      [7] Mor F, Sahindokuyucu Kocasari F, Ozdemir G, et al. Food Chem, 2012, 134:1645  

    8. [8]

      [8] Gao Y Y, Zhang C H, Liu X, et al. Chinese Journal of Chromatography, 2014, 32(5):524 高洋洋, 张朝晖, 刘鑫, 等. 色谱, 2014, 32(5):524  

    9. [9]

      [9] Reig M, Toldrá F. Meat Sci, 2008, 78:60  

    10. [10]

      [10] Bernal J, Nozal M J, Jiménez J J, et al. J Chromatogr A, 2009, 1216:7275  

    11. [11]

      [11] Cai Z X, Zhang Y, Pan H F, et al. J Chromatogr A, 2008, 1200:144  

    12. [12]

      [12] Zou Q H, Xie M X, Wang X F, et al. J Sep Sci, 2007, 30:2647  

    13. [13]

      [13] Delaunay-Bertoncini N, Hennion M C. J Pharm Biomed Anal, 2004, 34:717  

    14. [14]

      [14] Senyuva H Z, Gilbert J. J Chromatogr B, 2010, 878:115  

    15. [15]

      [15] Wang H, Zhao L, Yang H M, et al. Chinese Journal of Chromatography, 2015, 33(9):995 王浩, 赵丽, 杨红梅, 等. 色谱, 2015, 33(9):995  

    16. [16]

      [16] Huang H, Chen J H, Feng N, et al. Science and Technology of Food Industry, 2013, 33(4):378 黄华, 陈君慧, 冯楠, 等. 食品工业科技, 2013, 33(4):378

    17. [17]

      [17] KungT A, Tsai C A, Ku B C, et al. Food Chem, 2015, 175:189  

    18. [18]

      [18] He J H, Qiu J R, He D C, et al. Environmental Chemistry, 2012, 31(9):1436 何金华, 丘锦荣, 贺德春, 等. 环境化学, 2012, 31(9):1436

    19. [19]

      [19] Li X D, Xian Q M, Liu H L, et al. Chinese Journal of Analytical Chemistry, 2010, 38(3):429 李学德, 鲜啟明, 刘红玲, 等. 分析化学, 2010, 38(3):429

    20. [20]

      [20] Liu J H, Sun Z Z, Huang X L, et al. Chinese Journal of Chromatography, 2015, 33(4):434 刘菁华, 孙振中, 黄雪玲, 等. 色谱, 2015, 33(4):434  

    21. [21]

      [21] Wu C Q, Lei J M, Li Y L, et al. Chinese Journal of Chromatography, 2014, 32(12):1362 吴翠琴, 雷金妹, 李韵灵, 等. 色谱, 2014, 32(12):1362

    22. [22]

      [22] Deng Y H, Li L, Zhang H Q, et al. Journal of Huazhong Normal University, 2014, 48(1):53 邓樱花, 李林, 张洪权, 等. 华中师范大学学报, 2014, 48(1):53

    23. [23]

      [23] Yoshitake M, Nohta H, Ogata S, et al. J Chromatogr B, 2007, 858:307  

    24. [24]

      [24] Arroyo-Manzanares N, Gámiz-Gracia L, García-Campaña A M. Food Chem, 2014, 143:459  

    25. [25]

      [25] Kang J, Fan C L, Chang Q Y, et al. Anal Methods, 2014, 6:6285  

    26. [26]

      [26] Xiong S X, Han H W, Zhao R, et al. Chemical Journal of Chinese Universities, 2000, 21(8):1191 熊少祥, 韩慧婉, 赵睿, 等. 高等学校化学学报, 2000, 21(8):1191

    27. [27]

      [27] Amankwa L N, Scholl J, Kuhr W G. Anal Chem, 1990, 62:2189  

    28. [28]

      [28] O'shea T J, Weber P L, Bammel B P, et al. J Chromatogr, 1992, 608(1/2):189

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    5. [5]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    10. [10]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    11. [11]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    16. [16]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(3)
  • Abstract views(400)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return