Citation: HUANG Guopei, CHEN Yingjun, TIAN Chongguo, LIU Ying. Analysis of benzene polycarboxylic acids and nitro-benzene polycarboxylic acids as molecular tracers of black carbon by using liquid chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, ;2016, 34(3): 306-313. doi: 10.3724/SP.J.1123.2015.10045 shu

Analysis of benzene polycarboxylic acids and nitro-benzene polycarboxylic acids as molecular tracers of black carbon by using liquid chromatography-mass spectrometry

  • Corresponding author: CHEN Yingjun, 
  • Received Date: 29 October 2015

    Fund Project:

  • The benzene polycarboxylic acid (BPCA) method is an important molecular marker method for black carbon and dissolved black carbon quantification while the separation and quantification of benzene polycarboxylic acids and nitro-benzene polycarboxylic acids are the key process. In order to use mass spectrometer to solve the issue of identification of benzene polycarboxylic acids and nitro-benzene polycarboxylic acids due to the lack of the standards of some of the target compounds, a liquid chromatography-mass spectrometry method was proposed. It made the experimental procedures easier and faster than using the gas chromatography mass spectrometry, and would promote the use of the BPCA method. A Phenomenex Synergi Polar RP column was used. The digestion productions of black carbon and dissolved black carbon were gradiently eluted by the mobile phases of 0.5%(v/v) aqueous formic acid solution and methanol with the flow rate of 0.5 mL/min at 35 ℃. The determination was conducted by an ion trap mass spectrometer in negative electrospray ionization (ESI) mode under full scan and selected ion monitoring (SIM) modes. Simultaneously the three-dimensional ultraviolet spectra were collected by a photo diode array detector. The LC-MS method was proved to be suitable for the analysis of environmental black carbon and dissolved black carbon.
  • 加载中
    1. [1]

      [1] Masiello C A. Mar Chem, 2004, 92(1/4): 201

    2. [2]

      [2] Goldberg E D. Black Carbon in the Environment: Properties and Distribution. New York: Wiley, 1985

    3. [3]

      [3] Ding Y, Yamashita Y, Jones J, et al. Biogeochem, 2015, 123(1/2): 15

    4. [4]

      [4] Qin Y, Xie S D. Atmos Environ, 2011, 45(38): 6995  

    5. [5]

      [5] Andersson A, Deng J J, Du K, et al. Environ Sci Technol, 2015, 49(4): 2038  

    6. [6]

      [6] Hai T T, Chen Y J, Wang Y, et al. Environmental Science & Technology, 2013, 36(12): 153 海婷婷, 陈颖军, 王艳, 等. 环境科学与技术, 2013, 36(12): 153

    7. [7]

      [7] Glaser B, Haumaier L, Guggenberger G, et al. Org Geochem, 1998, 29(4): 811  

    8. [8]

      [8] Kim S, Kaplan L A, Benner R, et al. Mar Chem, 2004, 92: 225  

    9. [9]

      [9] Huang G P, Chen Y J, Tian C G, et al. Advances in Earth Science, 2012, 27(12): 1326 黄国培, 陈颖军, 田崇国, 等. 地球科学进展, 2012, 27(12): 1326

    10. [10]

      [10] Dittmar T. Org Geochem, 2008, 39(4): 396  

    11. [11]

      [11] Ziolkowski L A, Druffel E R M. Mar Pollut Bull, 2009, 59: 213  

    12. [12]

      [12] Ziolkowski L A, Chamberlin A R, Greaves J, et al. Limnol Oceanogr Meth, 2011, 9(4): 140  

    13. [13]

      [13] Brodowski S, Rodionov A, Haumaier L, et al. Org Geochem, 2005, 36(9): 1299  

    14. [14]

      [14] Schneider M P W, Hilf M, Vogt U F, et al. Org Geochem, 2010, 41(10): 1082  

    15. [15]

      [15] Schneider M P W, Smittenberg R H, Dittmar T, et al. Org Geochem, 2011, 42(3): 275  

    16. [16]

      [16] Kawamura K, Okuwaki A, Verheyen T, et al. Sep Sci Technol, 2006, 41(2): 379  

    17. [17]

      [17] Kvaratskheliya R, Kvaratskheliya E. Russ J Electrochem, 2006, 42(9): 978  

    18. [18]

      [18] Yassine M M, Dabek-Zlotorzynska E. Anal Meth, 2010, 2(2): 129  

    19. [19]

      [19] Yang L, He W, Liu J, et al. Research and Exploration in Laboratiory, 2012, 31(10): 238 杨柳, 贺伟, 刘娟, 等. 实验室研究与探索, 2012, 31(10): 238

    20. [20]

      [20] Frauendorf H, Herzschuh R. Eur Mass Spectrom, 1998, 4(4): 269

    21. [21]

      [21] Huang G P, Chen Y J, Tian C G, et al. J Coast Res, 2016, Special Issue 74: 212

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    10. [10]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    11. [11]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    20. [20]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

Metrics
  • PDF Downloads(1)
  • Abstract views(641)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return