Citation: SONG Jiafeng, FENG Siwei, XU Xiaodong, LIU Lijia, SONG Chaokun, WEN Xiaokun, CHEN Jinyong, LI Fangkun, OKAMOTO Yoshio. Preparation and chiral recognition ability of chiral stationary phase based on immobilized polyacrylamide derivative[J]. Chinese Journal of Chromatography, ;2016, 34(1): 74-79. doi: 10.3724/SP.J.1123.2015.10036 shu

Preparation and chiral recognition ability of chiral stationary phase based on immobilized polyacrylamide derivative

  • Corresponding author: XU Xiaodong, 
  • Received Date: 26 October 2015

    Fund Project: 国家自然科学基金项目(51103030) (51103030)黑龙江省自然科学基金项目(E201419) (E201419)哈尔滨市科技创新人才研究专项(2013RFLXJ027) (2013RFLXJ027)

  • High performance liquid chromatography (HPLC) has been widely considered as the most effective way for the separation and preparation of optically pure enantiomers. In the resolution by HPLC, the separation ability of a column strongly depends on the properties of a chiral stationary phase (CSP). Among many CSPs, the immobilized CSPs, which are becoming one of the most important kinds of CSPs, have the advantages of good solvent durability and enormous method flexibility. In this work, a novel optically active acrylamide derivative (S)-APACP was synthesized by two-step reactions, and its chemical structure was characterized by 1H NMR. The polyacrylamide derivatives were immobilized on silica gel by three-step reactions to prepare immobilized CSPs, and the immobilization amount of the polymers was tested by thermogravimetric analysis. The chiral recognition ability of the immobilized CSPs was evaluated by HPLC, and the effects of Lewis acid and mobile phase on the chiral recognition ability were investigated. The results showed that APACP polymer was successfully immobilized on silica gel to prepare immobilized-type CSP with better solvent durability, and the amount of immobilized polymer was 10.2% to 11.8%. The immobilized-type CSP showed good chiral recognition ability for several enantiomers.
  • 加载中
    1. [1]

      [1] Shen J, Liu S Y, Li P F, et al. J Chromotogr A, 2012, 1246: 137  

    2. [2]

      [2] Shen J, Ikai T, Okamoto Y. J Chromotogr A, 2014, 1363: 51  

    3. [3]

      [3] Ye Z B, Yang L F, Peng Y, et al. Chinese Journal of Chromatography, 2011, 29(3): 234 叶志兵, 杨兰芬, 彭雅, 等. 色谱, 2011, 29(3): 234  

    4. [4]

      [4] Zhang C H, Wang H L, Geng Q Q, et al. Macromolecules, 2013, 46(21): 8406  

    5. [5]

      [5] Miyagi Y, Hirao T, Haino T, et al. J Polym Sci Part A: Polym Chem, 2015, 53(21): 2452  

    6. [6]

      [6] Huang H J, Yuan Y B, Deng J P. Macromolecules, 2015, 48(11): 3406  

    7. [7]

      [7] Wang H, Xu X D. Chinese Journal of Polymer Bulletin, 2011(1): 94 王辉, 徐晓冬. 高分子通报, 2011(1): 94

    8. [8]

      [8] Chen L R. Chiral Separation by High Performance Liquid Chromatography. Beijing: Science Press, 2006 陈立仁. 液相色谱手性分离. 北京: 科学出版社, 2006

    9. [9]

      [9] Zhu Y Q, Xu X D, Feng S W, et al. Chinese Journal of Polymer Bulletin, 2012(6): 92 朱元棋, 徐晓冬, 冯四伟, 等. 高分子通报, 2012(6): 92

    10. [10]

      [10] Blaschke G. Angew Chem Int Ed Engl, 1980, 19(1): 13  

    11. [11]

      [11] Blaschke G, Broker W, Fraenkel W. Angew Chem Int Ed Engl, 1986, 25(9): 830  

    12. [12]

      [12] Morioka K, Suito Y, Isobe Y, et al. J Polym Sci Part A: Polym Chem, 2003, 41(21): 3354  

    13. [13]

      [13] Morioka K, Isobe Y, Hsbaue S, et al. Polym J, 2005, 37(4): 299  

    14. [14]

      [14] Fu Z, Xi X J, Jiang L M, et al. React Funct Polym, 2007, 67(7): 636  

    15. [15]

      [15] Xu X D, Feng S W, Zhu Y Q, et al. Eur Polym J, 2013, 49(11): 3673  

    16. [16]

      [16] Xu X D, Zhu Y Q, Li H, et al. Acta Polymerica Sinica, 2013(3): 286 徐晓冬, 朱元棋, 李晗, 等. 高分子学报, 2013(3): 286

    17. [17]

      [17] Lu W, Lou L P, Hu F Y, et al. J Polym Sci Part A: Polym Chem, 2010, 48(23): 5411  

    18. [18]

      [18] Liu G X, Lu W, Jiang L M, et al. Acta Polymerica Sinica, 2009(8): 775 刘光烜, 路伟, 江黎明, 等. 高分子学报, 2009(8): 775

  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    3. [3]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    7. [7]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    10. [10]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

Metrics
  • PDF Downloads(0)
  • Abstract views(175)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return