Citation: LIU Cuicui, GUO Ting, SU Rina, GU Yuchen, DENG Qiliang. Advances of poly(ionic liquid) materials in separation science[J]. Chinese Journal of Chromatography, ;2015, 33(11): 1126-1133. doi: 10.3724/SP.J.1123.2015.07033 shu

Advances of poly(ionic liquid) materials in separation science

  • Corresponding author: DENG Qiliang, 
  • Received Date: 31 July 2015

    Fund Project: 国家自然科学基金项目(21375094) (21375094)国家863计划课题(2012AA101609-2). (2012AA101609-2)

  • Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly(ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π - π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.
  • 加载中
    1. [1]

      [1] Schrekker H S, Stracke M P, Schrekker C M L, et al. Ind Eng Chem Res, 2007, 46(22): 7389  

    2. [2]

      [2] Ohno H, Yoshizawa M, Ogihara W. Electrochim Acta, 2004, 50(2/3): 255

    3. [3]

      [3] Hallett J P, Welton T. Chem Rev, 2011, 111(5): 3508  

    4. [4]

      [4] Chen S W, Zhang Z C, Zhai N N, et al. Tetrahedron, 2015, 71(4): 648  

    5. [5]

      [5] Stanzione J F, Jensen R E, Costanzo P J, et al. Appl Mater Interfaces, 2012, 4(11): 6142  

    6. [6]

      [6] Clough M T, Geyer K, Hunt P A, et al. Green Chem, 2015, 17(1): 231  

    7. [7]

      [7] Ding X Q, Wang Y Z, Zeng Q, et al. Anal Chim Acta, 2014, 815: 22  

    8. [8]

      [8] Zhang S, Sun J, Zhang X, et al. Chem Soc Rev, 2014, 43(22): 7838  

    9. [9]

      [9] Zhang G R, Munoz M, Etzold B J M. Appl Mater Interfaces, 2015, 7(6): 3562  

    10. [10]

      [10] Pang L Q, Zhong L J, Zhou H F, et al. Colloid Surf B-Biointerfaces, 2015, 126: 162  

    11. [11]

      [11] Wang B, Song A, Feng L, et al. Appl Mater Interfaces, 2015, 7(12): 6919  

    12. [12]

      [12] Stolte S, Steudte S, Areitioaurtena O, et al. Chemosphere, 2012, 89(9): 1135  

    13. [13]

      [13] Otero I, Lopez E R, Reichelt M, et al. Appl Mater Interfaces, 2014, 6(15): 13115  

    14. [14]

      [14] Tang S, Babai A, Mudring A V, et al. Angew Chem Int Ed Engle, 2008, 47(40): 7631  

    15. [15]

      [15] Wang D, Wang H, Li H. Appl Mater Interfaces, 2013, 5(13): 6268  

    16. [16]

      [16] Zhang L Y, Yao D, Li N, et al. Chinese Journal of Chromatography (张丽媛, 姚笛, 李娜, 等. 色谱), 2015, 33(7): 753

    17. [17]

      [17] Wu C Q, Lei J M, Li Y L, et al. Chinese Journal of Chromatography (吴翠琴, 雷金妹, 李韵灵, 等. 色谱), 2014, 32(12): 1362

    18. [18]

      [18] Qi L, Zhang J, Zhang Z Q. Chinese Journal of Chromatography (亓亮, 张婧, 张志琪. 色谱), 2013, 31(3): 249  

    19. [19]

      [19] Van Meter D S, Oliver N J, Carle A B, et al. Anal Bioanal Chem, 2009, 393(1): 283  

    20. [20]

      [20] Smuts J, Wanigasekara E, Armstrong D W. Anal Bioanal Chem, 2011, 400(2): 435  

    21. [21]

      [21] Xu A R, Wang J J, Wang H Y. Green Chem, 2010, 12(2): 268  

    22. [22]

      [22] Liu C C, Deng Q L, Fang G Z, et al. Anal Chim Acta, 2013, 804: 313  

    23. [23]

      [23] Green O, Grubjesic S, Lee S, et al. Polym Rev, 2009, 49(4): 339  

    24. [24]

      [24] Mecerreyes D. Prog Polym Sci, 2011, 36(12): 1629  

    25. [25]

      [25] Han H F, Wang Q, Liu X, et al. J Chromatogr A, 2012, 1246: 9  

    26. [26]

      [26] Tundo P, Venturello P, Angeletti E. J Am Chem Soc, 1982, 104(24): 6547  

    27. [27]

      [27] Qiu H, Jiang S, Liu X, et al. J Chromatogr A, 2006, 1116: 46  

    28. [28]

      [28] Qiu H, Jiang S, Liu X. J Chromatogr A, 2006, 1103: 265  

    29. [29]

      [29] Qiu H, Jiang Q, Wei Z, et al. J Chromatogr A, 2007, 1163: 63  

    30. [30]

      [30] Wang Y, Deng Q L, Fang G Z, et al. Anal Chim Acta, 2012, 712: 1  

    31. [31]

      [31] Liu C C, Deng Q L, Fang G Z, et al. Anal Bioanal Chem, 2014, 406(28): 7175  

    32. [32]

      [32] Mu X Y, Qi L, Shen Y, et al. Analyst, 2012, 137(18): 4235  

    33. [33]

      [33] Muderawan I W, Ong T, Tang W, et al. Tetrahedron Lett, 2005, 46(10): 1747  

    34. [34]

      [34] Zhou Z, Li X, Chen X, et al. Anal Chim Acta, 2010, 678: 208  

    35. [35]

      [35] Li X, Zhou Z. Anal Chim Acta, 2014, 819: 122  

    36. [36]

      [36] Yuan S F, Deng Q L, Fang G Z, et al. J Mater Chem, 2012, 22(9): 3965  

    37. [37]

      [37] Liu Y H, Ma R, Deng Q L, et al. RSC Adv, 2014, 4(94): 52147  

    38. [38]

      [38] Cai M Q, Wei X Q, Du C H, et al. J Chromatogr A, 2014, 1349: 24  

    39. [39]

      [39] Chen L, Huang X, Zhang Y, et al. J Chromatogr A, 2015, 1403: 37  

    40. [40]

      [40] Guo L, Deng Q L, Fang G Z, et al. J Chromatogr A, 2011, 1218: 6271  

    41. [41]

      [41] Bi W, Tian M, Row K H. J Chromatogr A, 2012, 1232: 37  

    42. [42]

      [42] Yan H, Liu S, Gao M, et al. J Chromatogr A, 2013, 1294: 10  

    43. [43]

      [43] Fan J P, Tian Z Y, Tong S, et al. Food Chem, 2013, 141(4): 3578  

    44. [44]

      [44] Qiu H, Liang X, Sun M, et al. Anal Bioanal Chem, 2011, 399(10): 3307  

    45. [45]

      [45] Han D, Tian M, Park D W, et al. Korean J Chem Eng, 2009, 26(5): 1353  

    46. [46]

      [46] Qiu H, Mallik A K, Takafuji M, et al. Chem Eur J, 2011, 17(26): 7288  

    47. [47]

      [47] Qiu H, Takafuji M, Sawada T, et al. Chem Commun, 2010, 46(46): 8740  

    48. [48]

      [48] Wang Y, Zhu T, Row K H. J Chromatogr Sci, 2010, 48(8): 690  

    49. [49]

      [49] Qiu H, Wang L, Liu X, et al. Analyst, 2009, 134(3): 460  

    50. [50]

      [50] Qiu H, Mallik A K, Sawada T, et al. Chem Commun, 2012, 48(9): 1299  

    51. [51]

      [51] Zhu T, Bi W, Row K H. J Appl Polym Sci, 2010, 118(6): 3425  

    52. [52]

      [52] Zhang P, Chen J, Jia L. J Chromatogr A, 2011, 1218: 3459  

    53. [53]

      [53] Shan Y, Qiao L, Shi X, et al. J Chromatogr A, 2015, 1375: 101  

    54. [54]

      [54] Armstrong D W, He L F, Liu Y S. Anal Chem, 1999, 71(17): 3873  

    55. [55]

      [55] Seeley J V, Seeley S K, Libby E K, et al. Anal Bioanal Chem, 2008, 390(1): 323  

    56. [56]

      [56] Hsieh Y N, Ho W Y, Horng R S, et al. Chromatographia, 2007, 66(7/8): 607

    57. [57]

      [57] Sun X, Zhu Y, Wang P, et al. J Chromatogr A, 2011, 1218: 833  

    58. [58]

      [58] Li J, Han H, Wang Q, et al. Anal Chim Acta, 2010, 674: 243  

    59. [59]

      [59] Li J, Wang Q, Han H, et al. Talanta, 2010, 82(1): 56  

    60. [60]

      [60] Li J, Han H, Wang Q, et al. J Sep Sci, 2011, 34(13): 1555  

    61. [61]

      [61] Li J, Han H, Wang Q, et al. J Sep Sci, 2010, 33(17/18): 2804

    62. [62]

      [62] Fang G Z, Qian H L, Deng Q L, et al. RSC Adv, 2014, 4(30): 15518  

    63. [63]

      [63] Liu C C, Deng Q L, Fang G Z, et al. J Mater Chem B, 2014, 2(32): 5229  

  • 加载中
    1. [1]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    6. [6]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    14. [14]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    15. [15]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    16. [16]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    18. [18]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(194)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return