Citation: WU Haixia, WANG Dongqiang, ZHAO Jianchao, KE Yanxiong, LIANG Xinmiao. Separation mechanism of chiral stationary phase based on quinine and crown ether for the direct stereoselective separation of amino acids[J]. Chinese Journal of Chromatography, ;2016, 34(1): 62-67. doi: 10.3724/SP.J.1123.2015.07015 shu

Separation mechanism of chiral stationary phase based on quinine and crown ether for the direct stereoselective separation of amino acids

  • Corresponding author: KE Yanxiong, 
  • Received Date: 15 July 2015

    Fund Project: 国家自然科学基金项目(21375038). (21375038)

  • A novel chiral stationary phase combining quinine and crown ether (QN-CR CSP) was developed to separate amino acid enantiomers. This CSP showed good enantioselectivity for some amino acids. Since the synergistic effect of ion exchange and complexation in chiral recognition of amino acids, a new adsorption isotherm was built. Using the method of frontal analysis by characteristic point (FACP), the adsorption isotherms of tryptophan (Trp) under different mobile phase conditions were determined and fitted the proposed adsorption isotherm model well. With the increase of the competition between metal cationic and amino to crown ether, the equilibrium constant of complexing adsorption was found increased. The chiral separation ability was decreased. The adsorption isotherm improved the understanding of the retention behavior of amino acids on QN-CR CSP, which was also benefit to optimize the structure of the stationary phase.
  • 加载中
    1. [1]

      [1] Deng Y H, Wang Z, Chen G X, et al. Guangzhou Chemical Industry, 2013, 41(6): 110 邓樱花, 王舟, 陈功轩, 等. 广州化工, 2013, 41(6): 110

    2. [2]

      [2] Tu H S, Fan J, Tan Y, et al. Chinese Journal of Chromatography, 2014, 32(5): 452 涂洪盛, 范军, 谭艺, 等. 色谱, 2014, 32(5): 452

    3. [3]

      [3] Hyun M H, Jin J S, Lee W. J Chromatogr A, 1998, 822: 155  

    4. [4]

      [4] Lee T, Lee W, Hyun M H, et al. J Chromatogr A, 2010, 1217: 1425  

    5. [5]

      [5] Lu Z Y, Wu P, Zi M, et al. Chinese Journal of Organic Chemistry, 2015, 35(1): 217 路振宇, 伍鹏, 字敏, 等. 有机化学, 2015, 35(1): 217  

    6. [6]

      [6] Zhang T, Holder E, Franco P, et al. J Sep Sci, 2014, 37(11): 1237  

    7. [7]

      [7] Wernisch S, Pell R, Lindner W. J Sep Sci, 2012, 35(13): 1560  

    8. [8]

      [8] Pell R, Lindner W. J Chromatogr A, 2012, 1245: 175  

    9. [9]

      [9] Ilisz I, Pataj Z, Berkecz R, et al. J Chromatogr A, 2010, 1217: 1075  

    10. [10]

      [10] Wang D Q, Zhao J C, Wu H X, et al. J Sep Sci, 2015, 38(2): 205  

    11. [11]

      [11] Fornstedt T, Sajonz P, Guiochon G. Chirality, 1998, 10(5): 375  

    12. [12]

      [12] Gotmar G, Fornstedt T, Guiochon G. Chirality, 2000, 12(7): 558  

    13. [13]

      [13] Fornstedt T, Gotmar G, Andersson M, et al. J Am Chem Soc, 1999, 121(6): 1164  

    14. [14]

      [14] Gritti F, Guiochon G. J Chromatogr A, 2005, 1099: 1  

    15. [15]

      [15] Moreau M, Samuelsson J, Undin T, et al. J Chromatogr A, 2011, 1218: 6688  

    16. [16]

      [16] Asnin L, Guiochon G. J Chromatogr A, 2010, 1217: 1709  

    17. [17]

      [17] Felinger A, Cavazzini A, Guiochon G. J Chromatogr A, 2003, 986: 207  

    18. [18]

      [18] Wu H B, Song G J, Wang D Q, et al. J Chromatogr A, 2013, 1298: 152  

    19. [19]

      [19] Samuelsson J, Fornstedt T. Anal Chem, 2008, 80(20): 7887  

    20. [20]

      [20] Yoshio M, Hiroyuki N, Kouji N. J Chromatogr A, 1999, 830: 311  

    21. [21]

      [21] Takeuchi T, Tokunafa K, Lim L W. Anal Sci, 2013, 29: 423  

    22. [22]

      [22] Jacobson S, Shirazi S G, Guiochon G. J Am Chem Soc, 1990, 112(18): 6492  

  • 加载中
    1. [1]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    4. [4]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    5. [5]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

Metrics
  • PDF Downloads(1)
  • Abstract views(238)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return