Citation: LIU Jing, HE Qingqing, YANG Lili, HU Enyu, WANG Meifei. Determination of trace and ultra-trace level bromate in water by large volume sample injection with enrichment column for on-line preconcentration coupled with ion chromatography[J]. Chinese Journal of Chromatography, ;2015, 33(10): 1110-1114. doi: 10.3724/SP.J.1123.2015.06012 shu

Determination of trace and ultra-trace level bromate in water by large volume sample injection with enrichment column for on-line preconcentration coupled with ion chromatography

  • Corresponding author: LIU Jing, 
  • Received Date: 8 June 2015

  • A method for the determination of trace and ultra-trace level bromate in water by ion chromatography with large volume sample injection for on-line preconcentration was established. A high capacity Dionex IonPac AG23 guard column was simply used as the enrichment column instead of the loop for the preconcentration of bromate. High purity KOH solution used as eluent for gradient elution was on-line produced by an eluent generator automatically. The results showed that a good linear relationship of bromate was exhibited in the range of 0.05-51.2 μg/L (r≥0.9995), and the method detection limit was 0.01 μg/L. Compared with conventional sample injection, the injection volume was up to 5 mL, and the enrichment factor of this method was about 240 times. This method was successfully applied for several real samples of pure water which were purchased in the supermarket, and the recoveries of bromate were between 90%-100% with the RSDs (n=6) of 2.1%-6.4% at two spiked levels. This method without pretreatment is simple, and of high accuracy and precision. The preconcentration can be achieved by large volume sample injection. It is suitable for the analysis of trace and ultra-trace level bromate.
  • 加载中
    1. [1]

      [1] Ying B, Li S M, Yue Y L, et al. Chinese Journal of Chromatography (应波, 李淑敏, 岳银玲, 等. 色谱), 2006, 24(3): 302

    2. [2]

      [2] Delcomyn C A, Weinberg H S, Singer P C. J Chromatogr A, 2001, 920(1/2): 213

    3. [3]

      [3] Office of Environmental Health Hazard Assessment. Public Health Goal for Bromate in Drinking Water. [2015-06-02]. http://www.oehha.ca.gov/water/phg/pdf/BromatePHG010110.pdf

    4. [4]

      [4] Liu Y J, Mou S F. Environmental Chemistry (刘勇建, 牟世芬. 环境化学), 2002, 21(2): 203

    5. [5]

      [5] US EPA 822-R-04-005

    6. [6]

      [6] World Health Organization. Guideline for Drinking-water Quality. [2015-06-02]. http://www.who.int/water_sanitation_health/publications/2011/dwq_chapters/en/

    7. [7]

      [7] GB 8537-2008

    8. [8]

      [8] GB 5749-2006

    9. [9]

      [9] CJ/T 206-2005

    10. [10]

      [10] Chen P, Gu S S, Lü Y P, et al. Brand & Standardization (陈璞, 顾书生, 吕永鹏, 等. 品牌与标准化), 2010(2): 63

    11. [11]

      [11] US EPA Method 300.1

    12. [12]

      [12] Shen X F, Sun Y Q, Weng L F. Modern Scientific Instruments (沈霞芬, 孙月奇, 翁利丰. 现代科学仪器), 2008, 18(2): 108

    13. [13]

      [13] Liu X P, Chen J, Jia M L. Chemical Reagents (刘秀萍, 陈婧, 贾美玲. 化学试剂), 2008, 30(2): 125

    14. [14]

      [14] Huo Q G, Fan L, Wu N N. Journal of Henan University of Technology: Natural Science Edition (霍权恭, 范璐, 吴娜娜. 河南工业大学学报: 自然科学版), 2007, 28(1): 10

    15. [15]

      [15] Li X P, Zhao R X, Shen C Y. Journal of Liaoning Shihua University (李秀萍, 赵荣祥, 沈春玉. 辽宁石油化工大学学报), 2011, 31(1): 9

    16. [16]

      [16] Yang M, Xie J, Yang S K, et al. Chinese Journal of Analysis Laboratory (杨敏, 谢静, 杨树科, 等. 分析试验室), 2012, 31(3): 55

    17. [17]

      [17] Dai M, Li W B, Wu L M. Water Technology (戴鸣, 李为兵, 吴黎敏. 供水技术), 2007, 1(4): 43

    18. [18]

      [18] Wang J, Dai J. Analytical Instrumentation (王娟, 戴军. 分析仪器), 2008(5): 21

    19. [19]

      [19] Luo H Y, Guo X D, Wu Y L. China Measurement & Test (罗海英, 郭新东, 吴玉銮, 等. 中国测试技术), 2008, 34(2): 100

    20. [20]

      [20] Zang D D, Tong J, Feng J L. China Water & Wastewater (臧道德, 童俊, 冯菊丽, 等. 中国给水排水), 2006, 22(18): 83

    21. [21]

      [21] Li M, Yu H, Zheng X R, et al. Chinese Journal of Chromatography (李朦, 于泓, 郑秀荣. 色谱), 2014, 32(3): 299

    22. [22]

      [22] Yu X L, Xie Z Y, Tang C M. The Food Industry (于晓丽, 谢增友, 唐崇明. 食品工业), 2012(3): 128

    23. [23]

      [23] Li Z W, Wang H L. Water Technology (李中巍, 王慧丽. 供水技术), 2010, 4(4): 49

    24. [24]

      [24] Shen J C, Jing M, Chen D Y, et al. Chinese Journal of Analytical Chemistry (沈金灿, 荆淼, 陈登云, 等. 分析化学), 2005, 33(7): 993

    25. [25]

      [25] Su Y L, Wu J, Fang L. China Water & Wastewater (苏宇亮, 吴杰, 方黎. 中国给水排水), 2008, 24(10): 82

    26. [26]

      [26] Lin L, Chen Y H, Wang H B. Food Science (林立, 陈玉红, 王海波. 食品科学), 2010, 31(12): 226

    27. [27]

      [27] Li J C, Wang X Y, Ouyang L, et al. Spectroscopy and Spectral Analysis (李骥超, 王小燕, 欧阳荔, 等. 光谱学与光谱分析), 2010, 30(11): 3136

    28. [28]

      [28] US EPA 321.8

    29. [29]

      [29] Roehl R, Slingsby R, Avdalovic N, et al. J Chromatogr A, 2002, 956: 245  

    30. [30]

      [30] Walters B D, Gordon G, Bubnis B. Anal Chem, 1997, 69: 4275  

    31. [31]

      [31] Shi Y L, Cai Y Q, Liu J S, et al. Chinese Journal of Analytical Chemistry (史亚利, 蔡亚岐, 刘京生, 等. 分析化学), 2005, 33(8): 1077

    32. [32]

      [32] GB/T 5750-2006

    33. [33]

      [33] HJ 168-2010

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    7. [7]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    8. [8]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    15. [15]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    16. [16]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    19. [19]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(0)
  • Abstract views(317)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return