Citation: Veera Raghava Raju THUMMALA, Mohana Krishna LANKA. Development and validation of a stability-indicating reverse phase ultra performance liquid chromatographic method for the estimation of nebivolol impurities in active pharmaceutical ingredients and pharmaceutical formulation[J]. Chinese Journal of Chromatography, ;2015, 33(10): 1051-1058. doi: 10.3724/SP.J.1123.2015.04043 shu

Development and validation of a stability-indicating reverse phase ultra performance liquid chromatographic method for the estimation of nebivolol impurities in active pharmaceutical ingredients and pharmaceutical formulation

  • Corresponding author: Veera Raghava Raju THUMMALA, 
  • Received Date: 24 April 2015

  • A sensitive, stability-indicating gradient reverse phase ultra performance liquid chromatographic method has been developed for the quantitative estimation of nebivolol impurities in active pharmaceutical ingredient (API) and pharmaceutical formulation. Efficient chromatographic separation was achieved on an Acquity BEH C18 column (100 mm×2.1 mm, 1.7 [WTBZ]μ[WTB4]m) with mobile phase of a gradient mixture. The flow rate of the mobile phase was 0.18 mL/min with column temperature of 30 ℃ and detection wavelength of 281 nm. The relative response factor values of (R*)-2-(benzylamino)-1-((S*)-6-fluorochroman-2-yl)ethanol ((R*S*) NBV-1), (R)-1-((R)-6-fluorochroman-2-yl)-2-((S)-2-((S)-6-fluoro-chroman-2-yl)-2-hydroxyethylamino)ethanol ((RRSS) NBV-3), 1-(chroman-2-yl)-2-(2-(6-fluorochroman-2-yl)-2-hydroxy ethyl amino)ethanol (monodesfluoro impurity), (S)-1-((R)-6-fluorochroman-2-yl)-2-((R)-2((S)-6-fluoro-chroman-2-yl)-2-hydroxyethylamino)ethanol hydrochloride ((RSRS) NBV-3) and (R*)-1-((S*)-6-fluorochroman-2-yl)-2-((S*)-2-((S*)-6-fluoro-chroman-2-yl)-2-hydroxyethylamino) ethanol ((R*S*S*S*) NBV-2) were 0.65, 0.91, 0.68, 0.92 and 0.91 respectively. Nebivolol formulation sample was subjected to the stress conditions of acid, base, oxidative, hydrolytic, thermal, humidity and photolytic degradation. Nebivolol was found to degrade significantly under peroxide stress condition. The degradation products were well resolved from nebivolol and its impurities. The peak purity test results confirmed that the nebivolol peak was homogenous and pure in all stress samples and the mass balance was found to be more than 98%, thus proving the stability-indicating power of the method. The developed method was validated according to International Conference on Hormonization (ICH) guidelines with respect to specificity, linearity, limits of detection and quantification, accuracy, precision and robustness.
  • 加载中
    1. [1]

      [1] Budavari S. The Merck Index. 14th ed. Hunterdon County: White House Station, 2006: 1112

    2. [2]

      [2] Martindale W. Martindale: the Extra Pharmacopoeia. 30th ed. New York: Pharmaceutical Press, 1993: 637

    3. [3]

      [3] Siebert C D, Hansicke A, Nagel T. Chirality, 2007, 20: 103

    4. [4]

      [4] Pauwels P J, Gommeren W, Van Lommen G, et al. Mol Pharmacol, 1988, 34: 843

    5. [5]

      [5] Cockcroft J R, Chowienczyk P J, Brett S E, et al. J Pharmacol Exp Ther, 1995, 274: 1067

    6. [6]

      [6] Gorog S. Talanta, 1997, 44: 1517  

    7. [7]

      [7] Sanjay B B, Bharati R K, Yogini S J, et al. Eurasian J Anal Chem, 2007, 2: 32

    8. [8]

      [8] ICH, Q3A (R2), 2006

    9. [9]

      [9] ICH, Q3B (R2), 2006

    10. [10]

      [10] Shirkhedkar A A, Bugdane P M, Surana S J. Pharmacol Rev, 2008: 141

    11. [11]

      [11] Rajeshwari K R, Sankar G G, Rao A L, et al. Asian J Chem, 2005, 17: 1259

    12. [12]

      [12] Aboul-Enein H Y, Ali I. Pharmazie, 2001, 56: 214

    13. [13]

      [13] Aboul-Enein H X. Biomed Chromatogr, 2003, 17: 111

    14. [14]

      [14] Thevis M, Opfermann G, Schanzer W. Biomed Chromatogr, 2001, 15: 393  

    15. [15]

      [15] Ramakrishna N V S. J Pharm Biomed Anal, 2005, 39: 1006  

    16. [16]

      [16] Sheshashena Reddy T, Sita Devi P. JPC-J Planar Chromat, 2007, 20: 149  

    17. [17]

      [17] Patel L J, Suhagia B N, Shah P B. Indian J Pharm Sci, 2007, 69: 594  

    18. [18]

      [18] Deepak S, Anurekha J, Alankar S. Pharm Methods, 2011, 2(1): 9  

    19. [19]

      [19] Chandnani V C, Gupta K R, Chopde C T, et al. Int J ChemTech Res, 2010, 2(1): 69

    20. [20]

      [20] Khandelwal N, Ranawat M S, Amardeep A, et al. Int J ChemTech Res, 2011, 3(1): 290

    21. [21]

      [21] Priyanka B P, Chetan B C, Dev A J, et al. Int J ChemTech Res, 2012, 4(3): 1241

    22. [22]

      [22] Keyur B A, Emanual M P, Falgun A M. J Chromat Separation Techniq, 2012, 3(5): 152

    23. [23]

      [23] Della G T P, Molly M, Anila J, et al. Int J Pharm Sci Rev Res, 2010, 3(2): 139

    24. [24]

      [24] Anilkumar S, Bhavesh P, Rakshit P. IJPBS, 2010, 1(4): 339

    25. [25]

      [25] Chetan M B, Hanumanthachar K J, Jayanthi C. IJRPBS, 2012, 3(4): 1594

    26. [26]

      [26] Pradeep M, Kamal S, Alka G. Int J Pharm Pharm Sci, 2009, 1(2): 5

    27. [27]

      [27] Gajbhiye A, Dwivedi N. Curr Trends Tech Sci, 2012, 1(2): 118

    28. [28]

      [28] Rao A L, Rajeswari K R, Sankar G G. E-J Chem, 2010, 7(2): 445  

    29. [29]

      [29] Tripti S, Rajesh P, Dannana G S, et al. Asian J Pharm Clin Res, 2012, 5: 69

    30. [30]

      [30] Sirisha N, Haripriya A, Swetha B N, et al. Der Pharmacia Lettre, 2013, 5(2): 78

    31. [31]

      [31] Siddartha B, Sudheer B I, Uttam P P. IJPRBS, 2014, 3(2): 215

    32. [32]

      [32] Rajagopalan R. Separ Sci Technol, 2004, 5: 27

    33. [33]

      [33] ICH, Q2(R1), 2005

    34. [34]

      [34] ICH, Q1A(R2), 2003

    35. [35]

      [35] ICH, Q1B, 1996

  • 加载中
    1. [1]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    2. [2]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    3. [3]

      Jun-Hui ZhangRui-Xue LiangBin HuangLi-Qin YuJuan ChenBang-Jin WangSheng-Ming XieLi-Ming Yuan . Preparation of a homochiral metal-organic cage and its bonded silicas for efficient enantioseparation in high-performance liquid chromatography and gas chromatography. Chinese Chemical Letters, 2026, 37(1): 111146-. doi: 10.1016/j.cclet.2025.111146

    4. [4]

      Shi LiWenshuai ZhaoYong QiWenbin NiuWei MaBingtao TangShufen Zhang . Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films. Chinese Chemical Letters, 2025, 36(9): 110653-. doi: 10.1016/j.cclet.2024.110653

    5. [5]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    6. [6]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    7. [7]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    8. [8]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    9. [9]

      Linfeng LiBao WangTiantong ZhangXinyuan WangDingqiang FengWei LiJiangjiexing WuJinli Zhang . Identifying the catalytic active site of durable Ru-based liquid-phase catalyst for acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(10): 111303-. doi: 10.1016/j.cclet.2025.111303

    10. [10]

      Jia-Xin Wu Zheng Yin Ming-Hua Zeng . Multi-phase evolution of MOFs involving crystal, liquid and glass: new dynamic chemistry. Chinese Journal of Structural Chemistry, 2025, 44(10): 100710-100710. doi: 10.1016/j.cjsc.2025.100710

    11. [11]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    12. [12]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    13. [13]

      Le-Tian ZhangBin XiaNan LuQuan-Wen LiXia ZhangNa LiXian-He Bu . A novel naphthalenediimide-based metal-organic framework for inkless erasable printing with ultra-long cycling performance. Chinese Chemical Letters, 2025, 36(12): 110534-. doi: 10.1016/j.cclet.2024.110534

    14. [14]

      Renming LiuZe GaoLinglong HuDaming YangMing FengDan Luo . Hydrophobic protective layer with ultra-long carbon chain for high-performance aqueous zinc ion batteries. Chinese Chemical Letters, 2026, 37(2): 111491-. doi: 10.1016/j.cclet.2025.111491

    15. [15]

      Zenggang LinPeng ZhangYuzhu YangWeisheng Liu . Multilevel stimulus-responsive smart organic afterglow materials beyond crystal limitations: Aqueous-phase dual emission afterglow and upconversion afterglow under ultra-wide range excitation. Chinese Chemical Letters, 2025, 36(9): 111194-. doi: 10.1016/j.cclet.2025.111194

    16. [16]

      Gaojie ZhuZhen YangShijun LiWeihua ZhuRui CaoJunlong ZhangJianzhang ZhaoJonathan L. SesslerXunjin ZhuJianxin SongYongshu XieJianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535

    17. [17]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    18. [18]

      Guang ZengYue ZengHuamin HuYaqing BaiFangjie NieJunfei DuanZhaoyong ChenQi-Long Zhu . Regulating pore structure and pseudo-graphitic phase of hard carbon anode towards enhanced sodium storage performance. Chinese Chemical Letters, 2025, 36(7): 110122-. doi: 10.1016/j.cclet.2024.110122

    19. [19]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    20. [20]

      Qiuting ZhangFan WuJin LiuHang SuYanhui ZhongZian Lin . Facile synthesis of single-crystal 3D covalent organic frameworks as stationary phases for high-performance liquid chromatographic separation. Chinese Chemical Letters, 2025, 36(8): 110649-. doi: 10.1016/j.cclet.2024.110649

Metrics
  • PDF Downloads(0)
  • Abstract views(523)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return