Citation: MA Xiaohong, WANG Qiang, LI Xiaoping, TANG Jun, ZHANG Zhengfang. Determination of the solubility parameter of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate by inverse gas chromatography[J]. Chinese Journal of Chromatography, ;2015, 33(11): 1192-1198. doi: 10.3724/SP.J.1123.2015.04041 shu

Determination of the solubility parameter of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate by inverse gas chromatography

  • Corresponding author: WANG Qiang, 
  • Received Date: 22 April 2015

    Fund Project: National Natural Science Foundation of China (Grant No. 21366029). (Grant No. 21366029)

  • Thermodynamic properties of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) were determined via inverse gas chromatography (IGC). Two groups of solvents with different chemical natures and polarities were used to obtain information about [BMIM]BF4-solvent interactions. The specific retention volume, molar heat of sorption, weight fraction activity coefficient, Flory-Huggins interaction parameter as well as solubility parameter were also determined in a temperature range of 333-373 K. The results showed that the selected solvents n-C10 to n-C12, carbon tetrachloride, cyclohexane and toluene were poor solvents for [BMIM]BF4, while dichloromethane, acetone, chloroform, methyl acetate, ethanol and methanol were favorite solvents for [BMIM]BF4. In addition, the solubility parameter of [BMIM]BF4 was determined as 23.39 (J/cm3)0.5 by the extrapolation at 298 K. The experiment proved that IGC was a simple and accurate method to obtain the thermodynamic properties of ionic liquids. This study could be used as a reference to the application and research of the ionic liquids.
  • 加载中
    1. [1]

      [1] Li X, Wang Q, Li L, et al. J Mol Liq, 2014, 200: 139  

    2. [2]

      [2] Revelli A L, Mutelet F, Jaubert J N. J Chem Eng Data, 2011, 56(10): 3873  

    3. [3]

      [3] Orfao E F, Dohnal V, Blahut A. J Chem Thermodyn, 2013, 65: 53  

    4. [4]

      [4] Boukherissa M, Mutelet F, Modarressi A, et al. Energy Fuels, 2009, 23: 2557  

    5. [5]

      [5] Sun J, Cheng W G, Fan W, et al. Catal Today, 2009, 148(3): 361

    6. [6]

      [6] Zhou F, Liang Y M, Liu W M. Chem Soc Rev, 2009, 38(9): 2590  

    7. [7]

      [7] McLachlan F, Mathews C J, Smith P J, et al. Organometallics, 2003, 22(25): 5350  

    8. [8]

      [8] Zhang D L, Deng Y F, Li C B, et al. Ind Eng Chem Res, 2008, 47(6): 1995  

    9. [9]

      [9] Schmarr H G, Slabizki P, Muntnich S, et al. J Chromatogr A, 2012, 1270(1): 310

    10. [10]

      [10] Chen Y, Wang Q, Zhang Z, et al. Ind Eng Chem Res, 2012, 51(46): 15293  

    11. [11]

      [11] Marciniak A, Wlazlo M. J Chem Thermodyn, 2013, 64(7): 114

    12. [12]

      [12] Batista M L S, Neves C M S S, Carvalho P J, et al. J Phys Chem B, 2011, 115(44): 12879  

    13. [13]

      [13] Wang Q, Chen Y, Deng L, et al. J Mol Liq, 2013, 180(8): 135

    14. [14]

      [14] Kim K-S, Shin B-K, Lee H. Korean J Chem Eng, 2004, 215(38): 1010

    15. [15]

      [15] Revelli A L, Mutelet F, Turmine M, et al. J Chem Eng Data, 2009, 54(1): 90  

    16. [16]

      [16] Carlisle T K, Bara J E, Gabriel C J, et al. Ind Eng Chem Res, 2008, 47(18): 7005  

    17. [17]

      [17] Yazici O, Sakar D, Cankurtaran O, et al. J Appl Polym Sci, 2011, 122(3): 1815  

    18. [18]

      [18] Chen Y L, Wang Q, Deng L S, et al. Chinese Journal of Chromatography, 2013, 31(2): 147

    19. [19]

      [19] Marciniak A. Int J Mol Sci, 2011, 12(6): 3553

    20. [20]

      [20] Deng L S, Wang Q, Zhang Z F, et al. Chinese Journal of Chromatography, 2014, 32(2): 169

    21. [21]

      [21] Wlazlo M, Marciniak A. J Chem Thermodyn, 2012, 54: 366  

    22. [22]

      [22] Marciniak A, Wlazlo M. J Chem Thermodyn, 2012, 54: 90  

    23. [23]

      [23] Heydar K T, Nazifi M, Sharifi A. Chromatographia, 2013, 769(3/4): 165

    24. [24]

      [24] Diez E, Ovejero G, Romero M D, et al. International Conference on Chemical and Process Engineering, 2011, 308(1/2): 553

    25. [25]

      [25] Sreekanth T V M, Ramanaiah S, Rani P R, et al. Polym Bull, 2009, 63(4): 547  

    26. [26]

      [26] Cakar F, Cankurtaran O. Polym Bull, 2005, 55(1/2): 95

    27. [27]

      [27] Papadopoulou S K, Karapanagiotis I, Zuburtikudis I, et al. J Polym Sci Pol Chem Part B, 2010, 48(16): 1826  

    28. [28]

      [28] Díez E, Ovejero G, Romero M D. Fluid Phase Equilibr, 2011, 308(1/2): 107

    29. [29]

      [29] Yoo B, Afzal W, Prausnitz J M. Ind Eng Chem Res, 2012, 51(29): 9913  

    30. [30]

      [30] de Schaefer C R, de Ruiz Holgado M E F, Arancibia E L. Fluid Phase Equilibr, 2008, 27(21): 53

    31. [31]

      [31] Askin A, Bütün V. Chromatographia, 2008, 67(9): 741

    32. [32]

      [32] King J W. Food Sci Technol Int, 1995, 28(2): 190

    33. [33]

      [33] Domanska U, Zolek-Tryznowska Z. J Phys Chem B, 2009, 113(46): 15312  

    34. [34]

      [34] Deng L, Wang Q, Chen Y, et al. J Mol Liq, 2013, 18(71): 246

    35. [35]

      [35] Bedrov D, Borodin O. J Phys Chem B, 2010, 114(40): 12802  

    36. [36]

      [36] Liu Y, Shi B. Polym Bull, 2008, 61(4): 501  

    37. [37]

      [37] Papadopoulou S K, Panayiotou C. J Chromatogr A, 2012, 1229: 230  

    38. [38]

      [38] Blanks R F, Prausnitz J. Ind Eng Chem Fundam, 1964, 31: 1

    39. [39]

      [39] Zhang H, Wu J, Zhang J, et al. Macromolecules, 2005, 38(20): 8272  

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Lingyu Chang Yanfang Lang Yuyan Zhu Jie Wang Ying Guo Die Wang Peng Ding Yueming Zhou Zhixiang Gong Shujuan Liu . Machine Learning-Optimized Microcolumn Ion Exchange Chromatography for Trace Arsenic Determination. University Chemistry, 2026, 41(1): 76-84. doi: 10.12461/PKU.DXHX202506023

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Qiaorong RU . Synthesis and characterization of tripyridine functionalized polyionic liquid luminescent materials. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 111-119. doi: 10.11862/CJIC.20250121

    6. [6]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    7. [7]

      Dan LUOXingcheng LIUDong LITong CHANG . Metal-support interaction effects on CO activation over Con/SiO2 catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003

    8. [8]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    9. [9]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    10. [10]

      Jia JITengqi YAOWenqian DENGWenjing SHIXuan LÜLin TIANXiaoyan XINYinling HOU . Structures, antibacterial activities, and interactions with DNA of two nickel complexes. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 78-86. doi: 10.11862/CJIC.20250141

    11. [11]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    12. [12]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    13. [13]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    14. [14]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    15. [15]

      Ziyu Bai Jiaxin Zhou Sisi Zhao Siyu Teng Xinxin Li Xiting Wang Yuwei Dong Zhen Zhao . Delving into the Captivating Color Transformation of Cobalt: Digital Empowerment of Intelligent Visual Robot Monitoring System for Measuring Thermodynamic Parameters. University Chemistry, 2026, 41(1): 122-132. doi: 10.12461/PKU.DXHX202505103

    16. [16]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(0)
  • Abstract views(491)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return