Citation: WANG Zhicong, SHA Yuebing, YU Xiaobo, LIANG Yuerong. Determination of flavonol glycosides in tea samples by ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry[J]. Chinese Journal of Chromatography, ;2015, 33(9): 974-980. doi: 10.3724/SP.J.1123.2015.04028 shu

Determination of flavonol glycosides in tea samples by ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry

  • Corresponding author: WANG Zhicong, 
  • Received Date: 22 April 2015

    Fund Project: 浙江省公益技术应用研究项目(2015C37070). (2015C37070)

  • An ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry (UPLC-PDA-MS/MS) method was developed for the determination of flavonol glycosides in tea samples. The chromatographic separation was performed on an UPLC HSS T3 column by gradient elution with the mobile phases of acetonitrile and water both containing 0.1%(v/v) formic acid. A total of 15 flavonol glycosides which include 3 myricetin glycosides, 6 quercetin glycosides and 6 kaempferol glycosides were positively identified in green and black tea samples by comparing the retention times and mass spectra of the samples with standards and publications. The quantities of flavonol glycosides were relatively calculated with the standard quercetin-3-rhamnosylglucoside (Q-GRh) which was calibrated with external quantification method using multi-reaction monitoring (MRM) mode. The results showed that there were different flavonol glycoside distributions in green tea and black tea. The total amount of flavonol glycosides in green tea was 1.7 times of that in black tea. The major flavonol glycosides in green tea were myricetin-3-galactoside (M-Ga), myricetin-3-glucoside (M-G), quercetin-3-glucosyl-rhamnosyl-galactoside (Q-GaRhG), quercetin-3-glucosyl-rhamnosyl-glucoside (Q-GRhG), kaempferol-3-glucosyl-rhamnosyl-galactoside (K-GaRhG) and kaempferol-3-glucosyl-rhamnosyl-glucoside (K-GRhG), but for black tea, the major flavonol glycosides were quercetin-3-rhamnosylglucoside (Q-GRh), quercetin-3-glucoside (Q-G), kaempferol-3-rhamnosylglucoside (K-GRh) and kaempferol-3-galactoside (K-Ga). The present method is accurate, convenient for the rapid identification of flavonol glycosides and analysis of constituent distribution for green and black teas.
  • 加载中
    1. [1]

      [1] Senanayake N J. Funct Foods, 2013, 5(4): 1529  

    2. [2]

      [2] Pinto M S. Food Res Int, 2013, 53(2): 558  

    3. [3]

      [3] Peterson J, Dwyer J, Bhagwat S, et al. Food Compos Anal, 2005, 18(6): 487  

    4. [4]

      [4] Price K R, Rhodes M J, Barnes K A. J Agric Food Chem, 1998, 46(7): 2517  

    5. [5]

      [5] Scharbert S, Hofmann T. J Agric Food Chem, 2005, 53(13): 5377  

    6. [6]

      [6] Jiang H Y, Engelhardt U H, Thrane C, et al. Food Chem, 2015, 183(1): 30

    7. [7]

      [7] Wu C Y, Xu H R, Heritier J, et al. Food Chem, 2012, 132(1): 144  

    8. [8]

      [8] Zhang W B, Wang Z C, Zhang L Y. Chinese Journal of Analytical Chemistry (张维冰, 王智聪, 张凌怡. 分析化学), 2014, 42(3): 415

    9. [9]

      [9] Zhang L Y, Wang Z C, Zhang W B. Chinese Journal of Chromatography (张凌怡, 王智聪, 张维冰. 色谱), 2013, 31(2): 122

    10. [10]

      [10] Souza L M, Cipriani T R, Serrato R V, et al. J Chromatogr A, 2008, 1207(1/2): 101

    11. [11]

      [11] Zhang L, Li N, Ma Z Z, et al. J Agric Food Chem, 2011, 59(16): 8754  

    12. [12]

      [12] Hooft J J, Akermi M, Yelda F, et al. J Agric Food Chem, 2012, 60(36): 8841  

    13. [13]

      [13] Dou J, Lee V S, Tzen J T, et al. J Agric Food Chem, 2007, 55(18): 7462  

    14. [14]

      [14] Yang Z Y, Tu Y Y, Baldermann S, et al. Food Sci Technol Int, 2009, 42(8): 1439

    15. [15]

      [15] Zhao Y, Chen P, Lin L Z, et al. Food Chem, 2011, 126(3): 1269  

    16. [16]

      [16] Lin L Z, Harnly J M. J Agric Food Chem, 2007, 55(4): 1084  

    17. [17]

      [17] Lin L Z, Chen P, Harnly J M. J Agric Food Chem, 2008, 56(17): 8130  

    18. [18]

      [18] Zhang W B, Wang Z C, Zhang L Y. Chinese Journal of Analytical Chemistry (张维冰, 王智聪, 张凌怡. 分析化学), 2013, 41(12): 1851

    19. [19]

      [19] Chen H, Zuo Y Y. Food Chem, 2007, 101(4): 1357  

    20. [20]

      [20] Vrhovsek U, Masuero D, Palmieri L, et al. J Food Compos Anal, 2012, 25(1): 9  

    21. [21]

      [21] Zhang R T, Chen J H, Shi Q, et al. Food Res Int, 2014, 56(1): 47

  • 加载中
    1. [1]

      Zhanming Zhang Can Zhu Juan Wang Yanghui Lin Mo Sun . Ideological and Political Cases in the Course of Organic Chemistry Experiment: Taking Caffeine Extraction from Tea Leaves Experiment as an Example. University Chemistry, 2025, 40(7): 34-41. doi: 10.12461/PKU.DXHX202409030

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Yao Chen Bing Peng Yuchi Zhao Xiang Xiao Tong Wang . Professional Synthesis and Innovation Experiment: Rapid Identification Experiment of Tea Grades Based on Colorimetric Sensor Array and Chemometrics. University Chemistry, 2026, 41(2): 366-374. doi: 10.12461/PKU.DXHX202503043

    4. [4]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    8. [8]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    11. [11]

      Longping Li Jiali Li Tiange Qu Jiaqing Cai Chuyu Zhang Wenji Guo Qiulian Li Fan Luo . “可视化”助力从茶叶中提取咖啡因实验的关键步——升华. University Chemistry, 2025, 40(8): 272-276. doi: 10.12461/PKU.DXHX202409137

    12. [12]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    17. [17]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    18. [18]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    19. [19]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(0)
  • Abstract views(672)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return