Citation: WANG Guoguang, ZHANG Dahai, YANG Dandan, PENG Jialin, LI Xianguo. Determination of eight polybrominated diphenyl ethers in marine sediments by ultrasonically assisted alkaline degradation extraction and gas chromatography- electron capture detection[J]. Chinese Journal of Chromatography, ;2015, 33(8): 885-891. doi: 10.3724/SP.J.1123.2015.04025 shu

Determination of eight polybrominated diphenyl ethers in marine sediments by ultrasonically assisted alkaline degradation extraction and gas chromatography- electron capture detection

  • Corresponding author: LI Xianguo, 
  • Received Date: 16 April 2015

    Fund Project: 国家自然科学基金项目(41276067). (41276067)

  • For determination of the eight polybrominated diphenyl ethers (PBDEs) in marine sediments based on gas chromatography-electron capture detection (GC-ECD), a rapid and effective method for simultaneous sample extraction and purification was developed, in which ultrasonically assisted alkaline hydrolysis was combined with solvent extraction. The sediment sample was processed in an ultrasonic bath in 2.00 mol/L NaOH-methanol solution for 30 min, and subsequently extracted by n-hexane. The organic phase was then separated and purified by silica column and concentrated to 100 μL for GC-ECD analysis. Under the optimized conditions, the recoveries and relative standard deviations (RSDs) for eight PBDE congeners ranged from 63.6% to 110.3% and from 1.7% to 10.5% (n=5), respectively. The limits of detection (LODs, S/N=3) ranged from 0.002 to 0.011 ng/g except for deca-brominated diphenyl ether (BDE-209), which was 0.097 ng/g. With high accuracy, good stability and adequate recovery, the established method was successfully applied to the analysis of PBDEs in the surface sediments from Bohai Sea. The concentrations of ∑8PBDEs (sum of 2,4,4'-tribromodiphenyl ether (BDE-28), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), 2,2',4,4',6-pentabromodiphenyl ether (BDE100), 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153), 2,2',4,4',5,6'-hexabromodiphenyl ether (BDE-154), 2,2',3,4,4',5',6-heptabromodiphenyl ether (BDE-183), BDE-209) and BDE-209 ranged from 1.566 to 6.760 ng/g and from 1.461 to 6.438 ng/g, respectively. A decreasing gradient of concentration was basically observed with increasing distance off the shore, indicating that anthropogenic activities, surface runoff and river inputs may be the sources of PBDEs in the sediments from Bohai Sea.
  • 加载中
    1. [1]

      [1] Huang F F, Li J G, Zhao Y F, et al. Environmental Chemistry (黄飞飞, 李敬光, 赵云峰, 等. 环境化学), 2011, 30(2): 418

    2. [2]

      [2] Rakkestad K E, Dye C J, Yttri K E, et al. J Environ Monit, 2007, 9(12): 1419  

    3. [3]

      [3] Chen D H, Bi X H, Liu M, et al. Chemosphere, 2011, 82(9): 1246  

    4. [4]

      [4] Qiu X H, Zhu T, Hu J X. Chemosphere, 2010, 80(10): 1207  

    5. [5]

      [5] Nouira T, Risso C, Chouba L, et al. Chemosphere, 2013, 93(3): 487  

    6. [6]

      [6] Frouin H, Lebeuf M, Hammill M, et al. Chemosphere, 2011, 82(5): 663  

    7. [7]

      [7] Rochman C M, Lewison R L, Eriksen M, et al. Sci Total Environ, 2014, 476/477: 622

    8. [8]

      [8] Hong W, Wei D Y, Dong H M. Chemical Engineering & Equipment (洪伟, 魏东洋, 董洪梅. 化学工程与设备), 2012(12): 150

    9. [9]

      [9] McDonald T A. Chemosphere, 2002, 46: 745  

    10. [10]

      [10] Chen C E, Zhao H X, Chen J W, et al. Chemosphere, 2012, 88(7): 791  

    11. [11]

      [11] Zou Y M, Ran Y, Gong J, et al. Environ Sci Technol, 2007, 41(24): 8262  

    12. [12]

      [12] Zhou P, Lin K F, Zhou X Y, et al. Chemosphere, 2012, 88(11): 1375  

    13. [13]

      [13] Pan X H, Tang J H, Li J, et al. J Environ Monit, 2010, 12(6): 1234  

    14. [14]

      [14] Li Y Y, Lin T, Chen Y J, et al. Environ Pollut, 2012, 171: 155  

    15. [15]

      [15] Chen L G, Huang Y M, Peng X C, et al. Chemosphere, 2009, 76(2): 226  

    16. [16]

      [16] Chen S J, Mai B X, Zeng Y P, et al. Acta Scientiae Circumstantiae (陈社军, 麦碧闲, 曾永平, 等. 环境科学学报), 2005, 25(9): 1255

    17. [17]

      [17] You Z Z, Kong D X, Xu J, et al. Environmental Chemistry (由宗政, 孔德祥, 许静, 等. 环境化学), 2013, 32(7): 1410

    18. [18]

      [18] Wan X, Wang B, Zhao S M, et al. Environmental Chemistry (万幸, 王彬, 赵世民, 等. 环境化学), 2011, 30(10): 1781

    19. [19]

      [19] Tang Z W, Huang Q F, Cheng J L, et al. Environ Sci Technol, 2014, 48(3): 1508  

    20. [20]

      [20] EPA Method 1668

    21. [21]

      [21] GB 13015-91

    22. [22]

      [22] Duan X Y, Li X G, Li Y X, et al. Environmental Chemistry (段晓勇, 李先国, 李艳霞, 等. 环境化学), 2012, 31(10): 1645

    23. [23]

      [23] Huang F F, Zhao Y F, Li J G, et al. Chinese Journal of Chromatography (黄飞飞, 赵云峰, 李敬光, 等. 色谱), 2011, 29(8): 743

    24. [24]

      [24] Mai B X, Chen S J, Luo X J, et al. Environ Sci Technol, 2005, 39(10): 3521  

    25. [25]

      [25] Chen S J, Feng A H, He M J, et al. Sci Total Environ, 2013, 444: 205  

    26. [26]

      [26] Chen S J, Gao X J, Mai B X, et al. Environ Pollut, 2006, 144(3): 651

    27. [27]

      [27] Jiang J J, Lee C L, Fang M D, et al. Mar Pollut Bull, 2011, 62(4): 815  

    28. [28]

      [28] Zhu H, Wang Y, Wang X, et al. Sci Total Environ, 2014, 468: 130

    29. [29]

      [29] Moon H B, Kannan K, Lee S J, et al. Chemosphere, 2007, 66(2): 243  

    30. [30]

      [30] Song W, Ford J C, Li A, et al. Environ Sci Technol, 2005, 39(15): 5600  

    31. [31]

      [31] Chen S J. [PhD Dissertation]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (陈社军. [博士学位论文]. 广州: 中国科学院广州地球化学研究所), 2005

  • 加载中
    1. [1]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    2. [2]

      Zelin Wang Gang Liu Mengran Wang Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077

    3. [3]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    9. [9]

      Chenfei Li Xu Han Qimeng Zhang Ben Zhang Xinyao Huang Mingxiao Deng Caixia Zheng Haizhu Sun . Measurement of Stress-Strain Curves of Polymeric Materials Using a Non-Contact Displacement Detector. University Chemistry, 2026, 41(1): 179-187. doi: 10.12461/PKU.DXHX202505101

    10. [10]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    11. [11]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    18. [18]

      Ruiying Zhao Shuheng Luo Jinke Li Junjie Zhang Min Zhu Yang Li Yanhong Bai Yinhuan Li Lijuan Wang . Ultrasonic-Assisted Synthesis of Rosacetal: A Comprehensive Research-Oriented Organic Chemistry Experiment. University Chemistry, 2025, 40(11): 300-309. doi: 10.12461/PKU.DXHX202412075

    19. [19]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(0)
  • Abstract views(707)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return