Citation:
WANG Guoguang, ZHANG Dahai, YANG Dandan, PENG Jialin, LI Xianguo. Determination of eight polybrominated diphenyl ethers in marine sediments by ultrasonically assisted alkaline degradation extraction and gas chromatography- electron capture detection[J]. Chinese Journal of Chromatography,
;2015, 33(8): 885-891.
doi:
10.3724/SP.J.1123.2015.04025
-
For determination of the eight polybrominated diphenyl ethers (PBDEs) in marine sediments based on gas chromatography-electron capture detection (GC-ECD), a rapid and effective method for simultaneous sample extraction and purification was developed, in which ultrasonically assisted alkaline hydrolysis was combined with solvent extraction. The sediment sample was processed in an ultrasonic bath in 2.00 mol/L NaOH-methanol solution for 30 min, and subsequently extracted by n-hexane. The organic phase was then separated and purified by silica column and concentrated to 100 μL for GC-ECD analysis. Under the optimized conditions, the recoveries and relative standard deviations (RSDs) for eight PBDE congeners ranged from 63.6% to 110.3% and from 1.7% to 10.5% (n=5), respectively. The limits of detection (LODs, S/N=3) ranged from 0.002 to 0.011 ng/g except for deca-brominated diphenyl ether (BDE-209), which was 0.097 ng/g. With high accuracy, good stability and adequate recovery, the established method was successfully applied to the analysis of PBDEs in the surface sediments from Bohai Sea. The concentrations of ∑8PBDEs (sum of 2,4,4'-tribromodiphenyl ether (BDE-28), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), 2,2',4,4',6-pentabromodiphenyl ether (BDE100), 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153), 2,2',4,4',5,6'-hexabromodiphenyl ether (BDE-154), 2,2',3,4,4',5',6-heptabromodiphenyl ether (BDE-183), BDE-209) and BDE-209 ranged from 1.566 to 6.760 ng/g and from 1.461 to 6.438 ng/g, respectively. A decreasing gradient of concentration was basically observed with increasing distance off the shore, indicating that anthropogenic activities, surface runoff and river inputs may be the sources of PBDEs in the sediments from Bohai Sea.
-
-
-
[1]
[1] Huang F F, Li J G, Zhao Y F, et al. Environmental Chemistry (黄飞飞, 李敬光, 赵云峰, 等. 环境化学), 2011, 30(2): 418
-
[2]
[2] Rakkestad K E, Dye C J, Yttri K E, et al. J Environ Monit, 2007, 9(12): 1419

-
[3]
[3] Chen D H, Bi X H, Liu M, et al. Chemosphere, 2011, 82(9): 1246

- [4]
-
[5]
[5] Nouira T, Risso C, Chouba L, et al. Chemosphere, 2013, 93(3): 487

-
[6]
[6] Frouin H, Lebeuf M, Hammill M, et al. Chemosphere, 2011, 82(5): 663

-
[7]
[7] Rochman C M, Lewison R L, Eriksen M, et al. Sci Total Environ, 2014, 476/477: 622
-
[8]
[8] Hong W, Wei D Y, Dong H M. Chemical Engineering & Equipment (洪伟, 魏东洋, 董洪梅. 化学工程与设备), 2012(12): 150
- [9]
-
[10]
[10] Chen C E, Zhao H X, Chen J W, et al. Chemosphere, 2012, 88(7): 791

-
[11]
[11] Zou Y M, Ran Y, Gong J, et al. Environ Sci Technol, 2007, 41(24): 8262

-
[12]
[12] Zhou P, Lin K F, Zhou X Y, et al. Chemosphere, 2012, 88(11): 1375

-
[13]
[13] Pan X H, Tang J H, Li J, et al. J Environ Monit, 2010, 12(6): 1234

-
[14]
[14] Li Y Y, Lin T, Chen Y J, et al. Environ Pollut, 2012, 171: 155

-
[15]
[15] Chen L G, Huang Y M, Peng X C, et al. Chemosphere, 2009, 76(2): 226

-
[16]
[16] Chen S J, Mai B X, Zeng Y P, et al. Acta Scientiae Circumstantiae (陈社军, 麦碧闲, 曾永平, 等. 环境科学学报), 2005, 25(9): 1255
-
[17]
[17] You Z Z, Kong D X, Xu J, et al. Environmental Chemistry (由宗政, 孔德祥, 许静, 等. 环境化学), 2013, 32(7): 1410
-
[18]
[18] Wan X, Wang B, Zhao S M, et al. Environmental Chemistry (万幸, 王彬, 赵世民, 等. 环境化学), 2011, 30(10): 1781
-
[19]
[19] Tang Z W, Huang Q F, Cheng J L, et al. Environ Sci Technol, 2014, 48(3): 1508

-
[20]
[20] EPA Method 1668
-
[21]
[21] GB 13015-91
-
[22]
[22] Duan X Y, Li X G, Li Y X, et al. Environmental Chemistry (段晓勇, 李先国, 李艳霞, 等. 环境化学), 2012, 31(10): 1645
- [23]
-
[24]
[24] Mai B X, Chen S J, Luo X J, et al. Environ Sci Technol, 2005, 39(10): 3521

-
[25]
[25] Chen S J, Feng A H, He M J, et al. Sci Total Environ, 2013, 444: 205

-
[26]
[26] Chen S J, Gao X J, Mai B X, et al. Environ Pollut, 2006, 144(3): 651
-
[27]
[27] Jiang J J, Lee C L, Fang M D, et al. Mar Pollut Bull, 2011, 62(4): 815

-
[28]
[28] Zhu H, Wang Y, Wang X, et al. Sci Total Environ, 2014, 468: 130
-
[29]
[29] Moon H B, Kannan K, Lee S J, et al. Chemosphere, 2007, 66(2): 243

-
[30]
[30] Song W, Ford J C, Li A, et al. Environ Sci Technol, 2005, 39(15): 5600

-
[31]
[31] Chen S J. [PhD Dissertation]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (陈社军. [博士学位论文]. 广州: 中国科学院广州地球化学研究所), 2005
-
[1]
-
-
-
[1]
Shunü Peng , Huamin Li , Zhaobin Chen , Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043
-
[2]
Zelin Wang , Gang Liu , Mengran Wang , Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077
-
[3]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[4]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[5]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[6]
Yuanchun Pan , Xinyun Lin , Leyi Yang , Wenya Hu , Dekui Song , Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052
-
[7]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[8]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[9]
Chenfei Li , Xu Han , Qimeng Zhang , Ben Zhang , Xinyao Huang , Mingxiao Deng , Caixia Zheng , Haizhu Sun . Measurement of Stress-Strain Curves of Polymeric Materials Using a Non-Contact Displacement Detector. University Chemistry, 2026, 41(1): 179-187. doi: 10.12461/PKU.DXHX202505101
-
[10]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[11]
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
-
[12]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[13]
Yifan Xie , Liyun Yao , Ruolin Yang , Yuxing Cai , Yujie Jin , Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133
-
[14]
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
-
[15]
Nan Xiao , Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099
-
[16]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[17]
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
-
[18]
Ruiying Zhao , Shuheng Luo , Jinke Li , Junjie Zhang , Min Zhu , Yang Li , Yanhong Bai , Yinhuan Li , Lijuan Wang . Ultrasonic-Assisted Synthesis of Rosacetal: A Comprehensive Research-Oriented Organic Chemistry Experiment. University Chemistry, 2025, 40(11): 300-309. doi: 10.12461/PKU.DXHX202412075
-
[19]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036
-
[20]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(707)
- HTML views(27)
Login In
DownLoad: