Citation: MENG Xianshuang, MA Qiang, BAI Hua, ZHANG Qing, LÜ Qing. Simultaneous determination of fifteen ultraviolet filters in sunscreen cosmetics by high performance liquid chromatography[J]. Chinese Journal of Chromatography, ;2015, 33(8): 799-804. doi: 10.3724/SP.J.1123.2015.03024 shu

Simultaneous determination of fifteen ultraviolet filters in sunscreen cosmetics by high performance liquid chromatography

  • Corresponding author: MA Qiang, 
  • Received Date: 19 March 2015

    Fund Project: 国家科技支撑计划项目(2013BAK04B03) (2013BAK04B03)国家认证认可监督管理委员会计划项目(2012B120). (2012B120)

  • An analytical method for the simultaneous determination of fifteen ultraviolet (UV) filters in sunscreen cosmetics was developed by high performance liquid chromatography (HPLC). Various cosmetic samples including lotions, emulsions, creams and waxes were firstly mixed thoroughly by adding tetrahydrofuran containing 2 g/L ammonium hydroxide followed by vortex and oscillation. If the wax samples were still homogenized incompletely, a ultrasonic oscillation protocol with heating to 50 ℃ was adopted. The homogeneous samples were then ultrasonically extracted by 80% aqueous methanol solution. After centrifugation and micropore filtration, the extracted components were separated on an XTerra MS C18 column with gradient elution by water containing 0.1%(v/v) formic acid and methanol containing 0.1%(v/v) formic acid, determined by a diode array detector (DAD) at 280 nm and 311 nm, and quantified using external standard method. Optimization for the pretreatment conditions of different matrices of cosmetics including sample dispersion solvents, extraction solvents and time were carried out. This developed method showed good linearity (r2≥0.9991) and the limits of quantification (LOQs) were between 1.2 and 5.1 μg/g. The recoveries of the fifteen compounds ranged from 84.2% to 100.7% at three spiked levels with the relative standard deviations (RSDs) between 0.9% and 9.5%. The analytes were well separated and this analytical method proved to be sensitive and accurate, so it can be used in the practical determination of the fifteen UV filters in commercial sunscreen cosmetics.
  • 加载中
    1. [1]

      [1] Lin W X, Sun X Q, Ma J. Chinese Journal of Chromatography (林维宣, 孙兴权, 马杰. 色谱), 2013, 31(5): 410  

    2. [2]

      [2] He Q S, Xu N, Li J, et al. Chinese Journal of Chromatography (何乔桑, 徐娜, 李晶, 等. 色谱), 2011, 29(8): 762

    3. [3]

      [3] Wang R, Tian F Z. Advances Materials Industry (王锐, 田福祯. 新材料产业), 2012(7): 58

    4. [4]

      [4] Murong X. Detergent & Cosmetics (慕容秀. 日用化学品科学), 2008, 31(7): 4

    5. [5]

      [5] Zheng L, Yu W J, Shen J. China Foreign Medical Treatment (郑利, 余雯静, 沈洁. 中外医疗), 2009, 28(10): 120

    6. [6]

      [6] Cao J F, Zhou J. China Surfactant Detergent & Cosmetics (曹锦芳, 周洁. 日用化学工业), 2004, 34(4): 259

    7. [7]

      [7] Azurdia R M, Pagliaro J A, Rhodes L E. Photodermatol Photo, 2000, 16(2): 53  

    8. [8]

      [8] Ministry of Health of the People's Republic of China. Hygienic Standard for Cosmetics. Beijing: Ministry of Health of the People's Republic of China (中华人民共和国卫生部. 化妆品卫生规范. 北京: 中华人民共和国卫生部), 2007

    9. [9]

      [9] Zhang G F, Mortier K A, Storozhenko S, et al. Rapid Commun Mass Spectrom, 2005, 19(8): 963  

    10. [10]

      [10] Meinerling M, Daniels M. Anal Bioanal Chem, 2006, 386(5): 1465  

    11. [11]

      [11] Rodil R, Quintana J B, López-Mahía P, et al. Anal Chem, 2008, 80(4): 1307  

    12. [12]

      [12] Rodil R, Quintana J B, López-Mahía P, et al. J Chromatogr A, 1216: 2958

    13. [13]

      [13] Mao X Q, Bian H T, Qu B C. Chinese Journal of Chromatography (毛希琴, 边海涛, 曲宝成. 色谱), 2013, 31(8): 775  

    14. [14]

      [14] Wang Y, Li X S. Flavor Fragrance Cosmetics (王晔, 李祥胜. 香料香精化妆品), 2014(4): 49

    15. [15]

      [15] Xie Q Y, Hou X F. China Pharmacist (谢琼玉, 侯晓斐. 中国药师), 2014, 17(11): 1977

    16. [16]

      [16] Guo C H, Zhang K D, Cai Y T, et al. Guangdong Chemical Industry (郭长虹, 张可冬, 蔡永通, 等. 广东化工), 2014, 41(15): 238

    17. [17]

      [17] Chen B, Li L, Ji W L. The Administration and Technique of Environment Monitoring (陈蓓, 李莉, 吉文亮. 环境监测管理与技术), 2010, 22(6): 61

    18. [18]

      [18] Zhang K D, Li H Y, Tan J H, et al. Chinese Journal of Analysis Laboratory (张可冬, 李慧勇, 谭建华, 等. 分析试验室), 2014, 33(9): 1108

    19. [19]

      [19] Gao L X, Zhang W Q, Yu X Y. Modern Preventive Medicine (高立雪, 张卫强, 喻晓毅. 现代预防医学), 2011, 38(7): 1324

    20. [20]

      [20] Xu X M, Gao Y H, Long C Y, et al. Chinese Journal of Health Laboratory Technology (许秀敏, 高燕红, 龙朝阳, 等. 中国卫生检验杂志), 2011, 21(7): 1601

  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    8. [8]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    12. [12]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    13. [13]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    14. [14]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(2)
  • Abstract views(362)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return