Citation: XU Lili, ZHONG Minghua, CHEN Xiaojing. Preparation and chromatographic performance of a eugenol-bonded silica gel stationary phase for high performance liquid chromatography[J]. Chinese Journal of Chromatography, ;2015, 33(5): 461-467. doi: 10.3724/SP.J.1123.2015.01039 shu

Preparation and chromatographic performance of a eugenol-bonded silica gel stationary phase for high performance liquid chromatography

  • Corresponding author: XU Lili, 
  • Received Date: 28 January 2015

    Fund Project: 潮州市科技局引导计划项目(2013H04). (2013H04)

  • A eugenol-bonded silica gel stationary phase (EGSP) for high performance liquid chromatography (HPLC) has been synthesized by the solid-liquid successive reaction method. The preparation process included two steps: firstly, γ-glycidoxypropyltrimethoxy-silane (KH-560) was covalently attached to the surface of spherical silica gel. Then the bonded silica gel continued to react with eugenol ligand, which was a plant active component, and obtained EGSP. The structure of EGSP was characterized by elemental analysis, thermogravimetric analysis and Fourier transform infrared spectroscopy. Using naphthalene as a probe, the column efficiency was tested under the mobile phase of acetonitrile-water (35:65, v/v) at a flow rate of 0.8 mL/min. The chromatographic properties and the retention mechanism of EGSP were evaluated by using neutral, basic and acidic analytes as solute probes. Meanwhile, the comparative study with C18 column and phenyl column was also carried out under the same chromatographic conditions. The result showed that the eugenol ligand was successfully bonded to the surface of silica gel with a 0.28 mmol/g of bonded amount, and the theoretical plate number of EGSP column was about 24707 N/m. The EGSP appeared to be a kind of excellent reversed-phase stationary phase with suitable hydrophobicity and various synergistic sites. The eugenol ligand bonded on silica gel could first provideπ-πinteraction sites for different analytes because of its benzene ring and alkenyl. In addition, the methoxy groups of eugenol were responsible for dipole-dipole and hydrogen-bonding interactions between the ligand and solutes in the effective separation process. Comparing with traditional C18 column and phenyl column, EGSP has an advantage in the fast separation of polar compounds under simple experimental conditions.
  • 加载中
    1. [1]

      [1] Yu S L. Methods and Applications of High Performance Liquid Chromatography. Beijing: Chemical Industry Press (于世林. 高效液相色谱方法及应用. 北京: 化学工业出版社), 2000: 8

    2. [2]

      [2] Mullangi R, Sharma K, Srinivas N R. Biomed Chromatogr, 2012, 26(8): 906

    3. [3]

      [3] Jardim I C S F, Maldaner L, Lourenco J, et al. J Sep Sci, 2010, 33(19): 2917  

    4. [4]

      [4] Qiu H D, Liang X J, Sun M, et al. Anal Bioanal Chem, 2011, 399(10): 3307  

    5. [5]

      [5] Beesley T E. LC GC Eur, 2011, 24(5): 270

    6. [6]

      [6] Ward T J, Ward K D. Anal Chem, 2012, 84(2): 626  

    7. [7]

      [7] Xiao Y, Ng S C, Tan T T Y, et al. J Chromatogr A, 2012, 1269: 52  

    8. [8]

      [8] Zhu Y Q, Xu X D, Feng S W, et al. Chinese Journal of Polymer Bulletin (朱元棋, 徐晓冬, 冯四伟, 等. 高分子通报), 2012(6): 92

    9. [9]

      [9] Lei W, Zhang L Y, Zhu Y X, et al. Chinese Journal of Analytical Chemistry (雷雯, 张凌怡, 朱亚仙, 等. 分析化学), 2010, 38(11): 1544

    10. [10]

      [10] Shen A J, Guo Z M, Liang X M. Progress in Chemistry (沈爱金, 郭志谋, 梁鑫淼. 化学进展), 2014, 26(1): 10

    11. [11]

      [11] Kotoni D, D' Acquarica I, Ciogli A, et al. J Chromatogr A, 2012, 1232: 196  

    12. [12]

      [12] Liu S J, Qiao X Q, Yang Y J, et al. Chinese Journal of Chromatography (刘士佳, 乔晓强, 杨艳军, 等. 色谱), 2014, 32(10): 1079

    13. [13]

      [13] Shen A J, Guo Z M, Yu L, et al. Chem Commun, 2011, 47(15): 4550  

    14. [14]

      [14] Shen A J, Li X L, Dong X F, et al. J Chromatogr A, 2013, 1314: 63  

    15. [15]

      [15] Fang Y S, Li L S, Chen H, et al. Chinese Journal of Applied Chemistry (方奕珊, 李来生, 陈红, 等. 应用化学), 2013, 30(1): 79

    16. [16]

      [16] Zhang Y, Liu M F, Fang Y S, et al. Journal of Nanchang University: Natural Science (张杨, 刘妙芬, 方奕姗, 等. 南昌大学学报: 理科版), 2012, 36(3): 228

    17. [17]

      [17] Song X M, Tang Z S. Extraction, Separation and Preparation of Chemical Components from Traditional Chinese Medicine. 2nd ed. Beijing: People's Medical Publishing House (宋小妹, 唐志书. 中药化学成分提取分离与制备. 2版. 北京: 人民卫生出版社), 2009: 62

    18. [18]

      [18] Peng Z B, Zhang Q G, Dai H J, et al. Lishizhen Medicine and Materia Medica Research (彭宅彪, 张琼光, 代虹健, 等. 时珍国医国药), 2006, 17(10): 2079

    19. [19]

      [19] Marszall M P, Baczek T, Kaliszan R. Anal Chim Acta, 2005, 547(2): 172  

  • 加载中
    1. [1]

      Tong Wang Liangyu Hu Shiqi Chen Xinqiang Fu Rui Wang Kun Li Shuangyan Huan . Determination of Benzenediol Isomers in Cosmetics Using High-Performance Liquid Chromatography Empowered by “Mathematical Separation”. University Chemistry, 2026, 41(1): 9-19. doi: 10.12461/PKU.DXHX202503128

    2. [2]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    3. [3]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    4. [4]

      Lingyu Chang Yanfang Lang Yuyan Zhu Jie Wang Ying Guo Die Wang Peng Ding Yueming Zhou Zhixiang Gong Shujuan Liu . Machine Learning-Optimized Microcolumn Ion Exchange Chromatography for Trace Arsenic Determination. University Chemistry, 2026, 41(1): 76-84. doi: 10.12461/PKU.DXHX202506023

    5. [5]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    6. [6]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    7. [7]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    8. [8]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    9. [9]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    13. [13]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    14. [14]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

Metrics
  • PDF Downloads(0)
  • Abstract views(482)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return