Citation: ZHANG Cuiying, CHEN Shilin, DONG Liang. Analysis and assessment of four commercial products of Asian ginseng by ultra-performance liquid chromatography and chemometric analysis[J]. Chinese Journal of Chromatography, ;2015, 33(5): 514-521. doi: 10.3724/SP.J.1123.2015.01018 shu

Analysis and assessment of four commercial products of Asian ginseng by ultra-performance liquid chromatography and chemometric analysis

  • Corresponding author: CHEN Shilin, 
  • Received Date: 14 January 2015

    Fund Project: National Science and Technology Support Project (2006BAI09B02) (2006BAI09B02) National Natural Science Foundation (81202932). (81202932)

  • Ginseng Radix et Rhizoma (GRR, also named as white ginseng), Ginseng Radix et Rhizoma Rubra (GRR Rubra, also named as red ginseng), Ginseng Folium (GF) and Ginseng Rootlet (GR) products from Asian ginseng, one of the well-known Chinese traditional medicine for thousands of years, are now widely used around the world. Thus the comprehensive quality control is of paramount concern basing on the contents of the bioactive ginsenosides. A rapid, sensitive and reliable method of ultra-performance liquid chromatography coupled with a photodiode array detection (UPLC-PAD) was developed for the quantitative analysis of the 12 ginsenosides in the four commercial ginseng products of Asian ginseng. The chromatography was performed on an ACQUITY UPLCTM BEH C18 column using a gradient elution with acetonitrile/water as the mobile phases. Method validation including calibration curves, accuracies, precisions, repeatabilities and recoveries was investigated. The contents of the 12 ginsenosides were determined in 20 GRR, 4 GF, 4 GR and 11 GRR Rubra samples. To evaluate the sample quality, chemometric methods including hierarchical cluster analysis (HCA) and principal components analysis (PCA) were engaged in evaluating the GRR, GRR Rubra, GF and GR products from Asian ginseng. The results showed that HCA and PCA can be considered as the attractive chemometric techniques in situations where high sample throughput and multiple analytes are required.
  • 加载中
    1. [1]

      [1] Kim K, Kim H Y. J Ethnopharmacol, 2008, 120(2): 190  

    2. [2]

      [2] Qi L W, Wang C Z, Yuan C S. Nat Prod Rep, 2011, 28(3): 467  

    3. [3]

      [3] Wang X M, Sakuma T, Asafu-Adjaye E, et al. Anal Chem, 1999, 71(8): 1579  

    4. [4]

      [4] Jia L, Zhao Y Q. Curr Med Chem, 2009, 16(19): 2475  

    5. [5]

      [5] Dou D Q, Chen Y J, Ma Z Z, et al. Chinese Journal of Medicinal Chemistry, 1996, 6(1): 54

    6. [6]

      [6] Wu Q, Chen X C, Du S Y. Journal of Beijing University of Traditional Chinese Medicine, 2006, 29(5): 344

    7. [7]

      [7] Chung S H, Choi C G, Park S H. Arch Pharm Res, 2001, 24(3): 214  

    8. [8]

      [8] Kim S N, Ha Y W, Shin H, et al. J Pharm Biomed Anal, 2007, 45(1): 164  

    9. [9]

      [9] Shi W, Wang Y T, Li J, et al. Food Chem, 2007, 102: 664  

    10. [10]

      [10] Zhang H M, Li S L, Zhang H, et al. J Pharm Biomed Anal, 2012, 62: 258  

    11. [11]

      [11] China Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China. Beijing: China Medical Science Press, 2010: 8, 9, 143

    12. [12]

      [12] Yan H, Zhao S Y, Liu Y J, et al. China Journal of Experimental Traditional Medical Formulae, 2013, 19(6): 105

    13. [13]

      [13] Qian Z M, Lu J, Gao Q P, et al. J Chromatogr A, 2009, 1216: 3825  

    14. [14]

      [14] Zhang K, Wang X, Ding L, et al. Chemical Research in Chinese Universities (English edition), 2008, 24: 707

    15. [15]

      [15] Wang A, Wang C Z, Wu J A, et al. Phytochem Anal, 2005, 16(4): 272  

    16. [16]

      [16] Li L, Luo G A, Liang Q L, et al. J Pharm Biomed Anal, 2010, 52(1): 66  

    17. [17]

      [17] Pereira A C, Reis M S, Saraiva P M, et al. Anal Chim Acta, 2010, 660(1): 8

    18. [18]

      [18] Dong L, Zhang C Y, Chen S L. Acta Pharmaceutica Sinica, 2011, 46(2): 198

    19. [19]

      [19] Zhang C Y, Dong L, Chen S L, et al. Acta Pharmaceutica Sinica, 2010, 45(10): 1296

  • 加载中
    1. [1]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    5. [5]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    6. [6]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    7. [7]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    8. [8]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    9. [9]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    10. [10]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    11. [11]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    12. [12]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    14. [14]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    15. [15]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    16. [16]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    19. [19]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    20. [20]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

Metrics
  • PDF Downloads(1)
  • Abstract views(170)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return