Citation:
Vanik GHOULIPOUR, Zahra HASSANKHANI-MAJD. Selective separation and determination of isoproterenol on thin layers of bismuth silicate ion-exchanger[J]. Chinese Journal of Chromatography,
;2015, 33(6): 667-671.
doi:
10.3724/SP.J.1123.2015.01014
-
A simple and sensitive method for the separation and determination of isoproterenol from other doping drugs has been developed on thin layers of bismuth silicate, a synthetic inorganic ion exchanger as adsorbent in thin layer chromatography (TLC). A mixture of methanol and 0.1 mol/L formic acid (3:7, v/v) was employed as the mobile phase. The development time was 32 min. The quantitative measurement were performed with a Camag TLC Scanner-3 at wavelength (λ) of 410 nm. The isoproterenol recovery in this procedure was 98.9%. The linear correlation coefficient was greater than 0.9871 and the relative standard deviation (RSD) was less than 0.94. The limit of detection (LOD) and limit of quantification (LOQ) were 7.7×10-7mol/L and 3.85 ×10-6mol/L, respectively. This method has been applied in the determination of isoproterenol in dosage forms and in biological fluids.
-
-
-
[1]
[1] Conway L, Morgan D. Drugs in Sports. London: British Medical Association, 2002
-
[2]
[2] Jimnez C, Ventura R, Segura J. J Chromatogr B, 2002, 767: 341

-
[3]
[3] Mueller R K, Grosse J, Lang R, et al. J Chromatogr B, 1995, 674: 1

-
[4]
[4] Sherma J, Fried B. Handbook of Thin-Layer Chromatography. New York: Marcel Dekker Inc., 1991: 407
- [5]
-
[6]
[6] Qureshi M, Varshney K G. Inorganic Ion-Exchangers in Chemical Analysis. Florida: CRC Press, 1991
-
[7]
[7] Husain S W, Ghoulipour V, Sepahrian H. Acta Chromatogr, 2004, 14: 102
-
[8]
[8] Bowers L D, Podraza J. USADA Guide to Prohibited Classes of Substances and Prohibited Methods of Doping. Colorado: Anti-Doping Agency, 2002: 7
- [9]
-
[10]
[10] Nieto J L, Laviada I D, Guillen A, et al. Cell Signal, 1993, 5: 169

-
[11]
[11] Krenek P, Kmecova J, Kucerova D, et al. Eur J Heart Fail, 2009, 11(12): 140
- [12]
-
[13]
[13] Liu Y M, Cao J T, Zheng Y L, et al. J Sep Sci, 2008, 31(13): 2463

-
[14]
[14] Zhou G J, Zhang G F, Chen H Y. Anal Chem Acta, 2002, 463: 257

-
[15]
[15] Zhang C, Huang J, Zhang Z, et al. Anal Chem Acta, 1998, 374: 105

-
[16]
[16] Al-Warthan A A, Al-Tamrah S A, Al-Akel A. Anal Sci, 1994, 10: 449

-
[17]
[17] Bonifacio Y G, Marccoline-Junior L H, Fatibello-Filho O. Anal Lett, 2004, 37(10): 2111

-
[18]
[18] Lupetti K O, Vieira I C, Fatibello-Filho O. Talanta, 2002, 57: 135

-
[19]
[19] Solieh P, Polydorou C K, Koupparis M A, et al. J Pharm Biomed Anal, 2000, 22: 781

-
[20]
[20] Nevado J J B, Gallego J M L, Laguna P B. Anal Chem Acta, 1995, 300: 293

-
[21]
[21] Ensafi A A, Khoddami E, Karimi-Maleh H. Int J Electrochem Sci, 2011, 6: 2596
-
[22]
[22] Kutluay A, Aslanoglu M. Acta Chim Slov, 2010, 57: 157
-
[23]
[23] Elord J L, Schmit J L, Morley J A. J Chromatogr A, 1996, 723: 235

-
[24]
[24] Hassankhani-Majd Z, Ghoulipour V, Husain S W. Acta Chromatogr, 2006, 16: 173
-
[25]
[25] Ahuja S, Scypinski S. Handbook of Modern Pharmaceutical Analysis. Burlington: Academic Press, 2011: 430
- [26]
-
[27]
[27] ICH Guidelines Q2B, Validation of Analytical Procedures: Methodology (CPMP/ICH/281/95). Geneva, 1996
-
[28]
[28] Papp E, Farkas A, Otta K H, et al. J Planar Chromatogr, 2000, 13: 328
-
[29]
[29] Ferenczi-Fodor K, Vegh Z, Nagy-Turak A, et al. J AOAC Int, 2001, 84: 1265
-
[30]
[30] Dallas F A A, Read H, Ruane R J, et al. Recent Advances in Thin-Layer Chromatography. New York: Springer, 1988: 11
-
[31]
[31] Ferenczi-Fodor K, Renger B, Vegh Z. J Planar Chromatogr, 2010, 23: 173

-
[32]
[32] Ramirez A, Gutierrez R, Diaz G, et al. J Chromatogr B, 2003, 784: 315

-
[33]
[33] Mazlom-Ardakani M, Sabaghian F, Khoshroo A, et al. Chin J Catal, 2014, 35: 565

-
[34]
[34] Lupetti K O, Vieira I C, Fatibello-Filho O. Talanta, 2002, 57: 135

-
[35]
[35] Rezaei B, Ensafi A A, Haghighatnia F. Anal Methods, 2012, 4: 1753

-
[36]
[36] Rocha F R P, Nobrega J A, Fatibello D. Green Chem, 2001, 3: 216

-
[1]
-
-
-
[1]
Qiao Wang , Ziling Jiang , Chuang Yu , Liping Li , Guangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006
-
[2]
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
-
[3]
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
-
[4]
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
-
[5]
Liangju Zhao , Shiyu Qin , Fei Wu , Limin Zhu , Qing Han , Lingling Xie , Xuejing Qiu , Hongliang Wei , Lanhua Yi , Xiaoyu Cao . Polycarbonyl conjugated porous polyimide as anode materials for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110246-. doi: 10.1016/j.cclet.2024.110246
-
[6]
Jin Chen , Jianzhong Zhou , Lihong Su , Xuebu Hu , Zhongli Hu , Sha Li , Yunlan Xu , Li Zhang . Non-conjugated adipamide organic anode materials for high-performance lithium-ion capacitors. Chinese Chemical Letters, 2025, 36(9): 110305-. doi: 10.1016/j.cclet.2024.110305
-
[7]
Le Li , Shaofeng Jia , Shi Yue , Yuanyuan Yang , Chao Tan , Conghui Wang , Hengwei Qiu , Yongqiang Ji , Minghui Cao , Zige Tai , Dan Zhang . Vanadium doping inhibit the Jahn−Teller effect of Mn3+ for high-performance aqueous zinc ion battery. Chinese Chemical Letters, 2025, 36(10): 111009-. doi: 10.1016/j.cclet.2025.111009
-
[8]
Hong Yin , Danyang Han , Wei Wang , Zhaohui Hou , Miao Zhou , Ye Han , İhsan Çaha , João Cunha , Maryam Karimi , Zhixin Tai , Xinxin Cao . Bimetallic sulfide anodes based on heterojunction structures for high-performance sodium-ion battery anodes. Chinese Chemical Letters, 2025, 36(12): 110537-. doi: 10.1016/j.cclet.2024.110537
-
[9]
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
-
[10]
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
-
[11]
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
-
[12]
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
-
[13]
Huanyan Liu , Jiajun Long , Hua Yu , Shichao Zhang , Wenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712
-
[14]
Xiaoqin Li , Xiaohan Chen , Yongqiang Guo , Jian Xiang , Yinkun Zhao , Taotao Gao , Qu Yue , Wenlong Liu , Lu Qiu , Dan Xiao , Panpan Li . Regulating zincophilic sites and electric field distribution to achieve reversible zinc plating/stripping for high-performance flexible Zn-ion batteries. Chinese Chemical Letters, 2025, 36(9): 110327-. doi: 10.1016/j.cclet.2024.110327
-
[15]
Peng Wang , Guanyu Zhao , Yicai Pan , Yujing Li , Chenxi Fu , Shipeng Sun , Junqi Gai , Jinping Mu , Xue Bai , Xiaohui Li , Jinfeng Sun , Xiaodong Shi , Rui He . Dual-salt electrolyte strategy enables stable interface reaction and high-performance lithium-ion batteries at low temperature. Chinese Chemical Letters, 2025, 36(11): 111190-. doi: 10.1016/j.cclet.2025.111190
-
[16]
Shuo Zhang , Haitao Liao , Zhi-Qun Liu , Chong Yan , Jia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284
-
[17]
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
-
[18]
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
-
[19]
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
-
[20]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(369)
- HTML views(37)
Login In
DownLoad: