Citation: ZHOU Rong, CAO Zhaoyun, MOU Renxiang, LI Zhengxiang, CHEN Mingxue. Determination of seven biothiols in rice by high performance liquid chromatography-fluorescence detection with pre-column derivatization[J]. Chinese Journal of Chromatography, ;2015, 33(1): 35-39. doi: 10.3724/SP.J.1123.2014.09024 shu

Determination of seven biothiols in rice by high performance liquid chromatography-fluorescence detection with pre-column derivatization

  • Corresponding author: CHEN Mingxue, 
  • Received Date: 16 September 2014
    Available Online: 24 October 2014

    Fund Project: 国家粮油作物产品质量安全风险评估项目(GJFP2014006). (GJFP2014006)

  • A high performance liquid chromatographic method with fluorescence detection and pre-column derivatization (HPLC-FLD) has been developed for the determination of seven biothiols including Cys, GSH, and phytochelatins (PCs: PC2, PC3, PC4, PC5 and PC6) in rice. The samples were ultrasonically extracted with 0.1% trifluoroacetic acid (TFA) containing 6.3 mmol/L diethylenetriaminepentaacetic acid (DTPA), and then the seven biothiols were derivatized with monobromobimane (mBrB) as derivatization agent in 4-(2-hydroxyethyl)-1-piperazine propanesulfonic acid (HEPPS) buffer solution (pH 8.0). The separation was performed on an Agilent Eclipse Plus C18 column (50 mm×4.6 mm, 5 μm) with gradient elution of 0.1%TFA solution (the pH value was adjusted to 2.5 with hydrochloric acid) and acetonitrile as mobile phases at a flow rate of 0.8 mL/min. The detection was performed at 380 nm for excitation and 470 nm for emission. The calibration curves of the seven biothiols showed good linearity in the concentration range of 0.7-100.0 mg/L with the correlation coefficients (r2)≥0.9991. The limits of detection were 0.03-0.20 mg/L. The recoveries of standard addition were in the range of 89.26%-99.42% with the relative standard deviations (RSDs, n=6) of 2.05%-5.87%. The method is sensitive, accurate, reproducible and suitable for the simultaneous determination of Cys, GSH, PC2, PC3, PC4, PC5 and PC6 in rice.
  • 加载中
    1. [1]

      [1] Li A M, Li D H, Deng Q Y, et al. Plant Physiology Journal (李安明, 李德华, 邓青云, 等. 植物生理学报), 2011, 47(1): 27

    2. [2]

      [2] Schmöger M E V, Oven M, Grill E. Plant Physiol, 2000, 122: 793  

    3. [3]

      [3] Lee S, Moon J S, Ko T S, et al. Plant Physiol, 2003, 131: 656  

    4. [4]

      [4] Wu F B, Zhang G P. Chinese Journal of Applied Ecology (邬飞波, 张国平. 应用生态学报), 2003, 14(4): 632

    5. [5]

      [5] Feng B M, Ma M. Chinese Journal of Applied and Environmental Biology (冯保民, 麻密. 应用与环境生物学报), 2003, 9(4): 657

    6. [6]

      [6] Cai B S, Lei M, Chen T B, et al. Acta Ecologica Sinica (蔡保松, 雷梅, 陈同斌, 等. 生态学报), 2003, 23(10): 2125

    7. [7]

      [7] Guo X F, Zhu H, Wang H, et al. J Sep Sci, 2013, 36: 658  

    8. [8]

      [8] Figueira E, Freitas R, Guasch H, et al. Ecotoxicology, 2014, 23: 285  

    9. [9]

      [9] Tang D G, Wen L S, Santschi P H. Anal Chim Acta, 2000, 408: 299  

    10. [10]

      [10] Sun Y C, Xu X Z, Xu Y L, et al. Chinese Journal of Chromatography (孙言春, 许宪祝, 徐衍岭, 等. 色谱), 2013, 31(3): 275  

    11. [11]

      [11] Li H L, Zhao C X, Zhang J J, et al. Chinese Journal of Chromatography (李好丽, 赵春霞, 张俊杰, 等. 色谱), 2013, 31(12): 1182

    12. [12]

      [12] Xu Q Q, Guo X S, Xiao K Y, et al. Environ Sci Pollut Res, 2014, 21: 8315  

    13. [13]

      [13] Mendoza-Cózatl D G, Butko E, Springer F, et al. Plant J, 2008, 54: 249  

    14. [14]

      [14] Qiu B Y, Zeng F R, Cai S G, et al. J Plant Physiol, 2013, 170: 772  

    15. [15]

      [15] Batista B L, Nigar M, Mestrot A, et al. J Exp Bot, 2014, 65(6): 1467  

    16. [16]

      [16] Nakamura M, Ochiai T, Noji M, et al. Plant Biotechnol, 2014, 31: 141  

    17. [17]

      [17] Isokawa M, Funatsu T, Tsunode M. Analyst, 2013, 138: 3802  

    18. [18]

      [18] Böhmer A, Jordan J, Tsikas D. Anal Biochem, 2011, 410: 296  

    19. [19]

      [19] Li P, Ge Y, Wu L H, et al. Chinese Journal of Rice Science (李鹏, 葛滢, 吴龙华, 等. 中国水稻科学), 2011, 25(3): 291

    20. [20]

      [20] Sneller F E C, van Heerwaarden L M, Koevoets P L M, et al. J Agric Food Chem, 2000, 48: 4014  

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(1)
  • Abstract views(188)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return