Citation: GAO Mengjie, ZHOU Yao, SHENG Yonggang, ZHAO Shanzhen, DENG Xiaojun, GUO Dehua, DING Zhuoping, WANG Guomin, PENG Tao. Determination of 12 bisphenol substances in functional foods by QuEChERS and high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, ;2014, 32(11): 1201-1208. doi: 10.3724/SP.J.1123.2014.06037 shu

Determination of 12 bisphenol substances in functional foods by QuEChERS and high performance liquid chromatography-tandem mass spectrometry

  • Corresponding author: DENG Xiaojun,  DING Zhuoping, 
  • Received Date: 25 June 2014
    Available Online: 19 August 2014

    Fund Project: 上海市科委技术标准专项项目(13DZ0502502,12DZ0503102) (13DZ0502502,12DZ0503102)科技部"十二五"科技支撑项目(2012BAD33B02) (2012BAD33B02)国家质检总局质检公益专项(201310140-02). (201310140-02)

  • A method based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of 12 bisphenol substances in functional foods (powder, tablet, capsule) was presented. The samples were extracted by acetonitrile containing 1% (v/v) acetic acid followed by further cleaned up using matrix solid-phase dispersion to remove matrix interferences. The separation of the 12 bisphenol substances was performed on a Thermo Aquasil C18 column (150 mm×4.6 mm, 3.0 μm), and determined in the positive and negative MRM modes by MS/MS using matrix-matched external standard method. The results demonstrated that the calibration curves were of good linearity with the correlation coefficients greater than 0.99. The limits of detection (LODs, S/N>3) were in the range of 0.1-0.5 μg/kg and the limits of quantitation (LOQs, S/N>10) were 0.4-1.7 μg/kg. The recoveries of the 12 bisphenol substances spiked at three levels (2.0, 5.0 and 10.0 μg/kg) in matrix ranged from 60.5% to 116.3% with the relative standard deviations (RSDs) of 6.8% to 11.2%. The established method is simple, time-saving and sensitive. It can meet the requirements for current regulations while achieving qualitative and quantitative determination of the 12 bisphenol substances in functional foods.
  • 加载中
    1. [1]

      [1] Cabado A G, Aldea S, Porro C, et al. Food Chem Toxicol, 2008, 46: 1674  

    2. [2]

      [2] Miao J Z, Xue M, Zhang H. Chinese Journal of Analytical Chemistry (缪佳铮, 薛鸣, 张虹. 分析化学), 2009, 37(6): 911

    3. [3]

      [3] Cao G Z, Chen S H, Xiao D Q, et al. Chinese Journal of Analytical Chemistry (曹国洲, 陈少鸿, 肖道清, 等. 分析化学), 2014, 42(3): 403

    4. [4]

      [4] Bao Y, Wang H Y, Li Z Q, et al. Food Science (鲍洋, 汪何雅, 李竹青, 等. 食品科学), 2011, 32(21): 261

    5. [5]

      [5] Hu X W, Zhang W D, Liu Y Q. Food Science (胡向蔚, 张文德, 刘炎桥. 食品科学), 2006, 27(4): 264

    6. [6]

      [6] Cao G P, Wang B B, Ding Q C, et al. Chemistry & Bioengineering (曹桂萍, 王蓓蓓, 丁其晨, 等. 化学与生物工程), 2010, 27(10): 86

    7. [7]

      [7] Commission Regulation EC/1895/2005

    8. [8]

      [8] Commission Regulation EU No.10/2011

    9. [9]

      [9] GB 9685-2008

    10. [10]

      [10] Zhao X Y, Fu X F, Wang P, et al. Chinese Journal of Chromatography (赵晓亚, 付小芳, 王鹏, 等. 色谱), 2012, 30(10): 1002

    11. [11]

      [11] Liang K, Deng X J, Yi X H, et al. Chinese Journal of Analytical Chemistry (梁凯, 邓晓军, 伊雄海, 等. 分析化学), 2012, 40(5): 705

    12. [12]

      [12] Zhang Z H, Luo S L, Wu S L, et al. Journal of Instrumental Analysis (张朝晖, 罗生亮, 吴少林, 等. 分析测试学报), 2009, 28(6): 714

    13. [13]

      [13] Xiao D Q, Liu Z M, Ma M, et al. Journal of Instrumental Analysis (肖道清, 刘在美, 马明, 等. 分析测试学报), 2013, 32(12): 1502

    14. [14]

      [14] Lehotay S J, Mastovska K, Yun S J. J AOAC Int, 2005, 88(2): 630

    15. [15]

      [15] Xu R, Wu J W, Liu Y G, et al. Chemosphere, 2011, 84: 908  

    16. [16]

      [16] Guo D H, Deng X J, Zhao S Z, et al. Chinese Journal of Analytical Chemistry (郭德华, 邓晓军, 赵善贞, 等. 分析化学), 2010, 38(3): 318

    17. [17]

      [17] European Union (2002/657/EC)

    18. [18]

      [18] Angelika W, Marek B. Food Chem, 2011, 125: 803  

    19. [19]

      [19] George S, Timothy B. Anal Chim Acta, 2009, 637: 68  

    20. [20]

      [20] Xiang P, Shen M, Zhuo X Y. Journal of Instrumental Analysis (向平, 沈敏, 卓先义. 分析测试学报), 2009, 28(6): 753

    21. [21]

      [21] Little J L, Wempe M F, Buchanan C M. J Chromatogr B, 2006, 833(2): 219  

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    18. [18]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(0)
  • Abstract views(237)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return