Citation: CAO Xiaolin, GONG Jiadi, CHEN Mingxue, YU Shasha, BIAN Yingfang, CAO Zhaoyun. Analysis of rice leaves proteomes by liquid chromatography-tandem mass spectrometry based on the purification using a novel affinity detergent removal spin column[J]. Chinese Journal of Chromatography, ;2014, 32(11): 1181-1186. doi: 10.3724/SP.J.1123.2014.06035 shu

Analysis of rice leaves proteomes by liquid chromatography-tandem mass spectrometry based on the purification using a novel affinity detergent removal spin column

  • Corresponding author: CAO Zhaoyun, 
  • Received Date: 23 June 2014
    Available Online: 21 July 2014

    Fund Project: 中央级公益性科研院所基本科研业务专项(CNRRI2012RG007-2) (CNRRI2012RG007-2)国家粮油作物产品质量安全风险评估项目(GJFP2014006). (GJFP2014006)

  • A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies (>95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes.
  • 加载中
    1. [1]

      [1] Second T P, Blethrow J D, Schwartz J C, et al. Anal Chem, 2009, 81: 7757  

    2. [2]

      [2] Hsieh E J, Hoopmann M R, MacLean B, et al. J Proteome Res, 2010, 9: 1138  

    3. [3]

      [3] Yu H Y, Yan J Z, Guo M, et al. Chinese Journal of Chromatography (于海洋, 晏嘉泽, 郭明, 等. 色谱), 2013, 31(4): 362

    4. [4]

      [4] Yates J R. J Am Chem Soc, 2013, 135(5): 1629  

    5. [5]

      [5] Jorrin-Novo J V, Komatsu S, Weckwerth W, et al. Methods in Molecular Biology. New York: Humana Press, 2014

    6. [6]

      [6] Li B, Ning L Y, Zhang J W, et al. Hubei Agricultural Sciences (李蓓, 宁露云, 张俊卫, 等. 湖北农业科学), 2013, 52(32): 5403

    7. [7]

      [7] Kim S T, Kim S G, Agrawal G K, et al. Proteomics, 2014, 14: 593  

    8. [8]

      [8] Masuda T, Tomita M, Ishihama Y. J Proteome Res, 2008, 7: 731  

    9. [9]

      [9] Bereman M S, Egertson J D, MacCoss M J. Proteomics, 2011, 11: 2931  

    10. [10]

      [10] Winter D, Steen H. Proteomics, 2011, 11: 4726  

    11. [11]

      [11] Tanca A, Biosa G, Pagnozzi D, et al. Proteomics, 2013, 13: 2597  

    12. [12]

      [12] Zhang N, Chen R, Young N, et al. Proteomics, 2007, 7: 484  

    13. [13]

      [13] Lin Y, Liu H, Liu Z, et al. J Chromatogr B, 2012, 901: 18  

    14. [14]

      [14] Botelho D, Wall M J, Vieira D B, et al. J Proteome Res, 2010, 9: 2863  

    15. [15]

      [15] Antharavally B S, Mallia K A, Rosenblatt M M, et al. Anal Biochem, 2011, 416: 39  

    16. [16]

      [16] Hengel S M, Floyd E, Baker E S, et al. Proteomics, 2012, 12: 3138  

    17. [17]

      [17] Sheoran I S, Ross A R S, Olson D J H, et al. Plant Sci, 2009, 176: 99  

    18. [18]

      [18] Wiśniewski J R, Zougman A, Nagaraj N, et al. Nat Methods, 2009, 6: 359  

    19. [19]

      [19] Manza L L, Stamer S L, Ham A J L, et al. Proteomics, 2005, 5: 1742  

    20. [20]

      [20] Wiśniewski J R, Ostasiewicz P, Mann M. J Proteome Res, 2011, 10: 3040  

    21. [21]

      [21] Wiśniewski J R, Zielinska D F, Mann M. Anal Biochem, 2011, 410: 307  

    22. [22]

      [22] Fic E, Kedracka-Krok S, Jankowska U, et al. Electrophoresis, 2010, 31: 3573  

    23. [23]

      [23] Muthurajan R, Shobbar Z S, Jagadish S V K, et al. Mol Biotechnol, 2011, 48: 173  

    24. [24]

      [24] Zhao C F, Wang J Q, Cao M L, et al. Proteomics, 2005, 5: 961  

    25. [25]

      [25] Wei K H, Ying T Y, Hu L P, et al. Short Protocols in Proteomics. Beijing: Chemical Industry Press (魏开华, 应天翼, 胡良平, 等. 蛋白质组学实验技术精编. 北京: 化学工业出版社), 2010

    26. [26]

      [26] Islam N, Lonsdale M, Upadhyaya N M, et al. Proteomics, 2004, 4: 1903  

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    15. [15]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    16. [16]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    17. [17]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(0)
  • Abstract views(163)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return