Citation:
FENG Biting, GAN Zhiwei, HU Hongwei, SUN Hongwen. Optimization of sample pretreatment method for the determination of typical artificial sweeteners in soil by high performance liquid chromatography- tandem mass spectrometry[J]. Chinese Journal of Chromatography,
;2014, 32(9): 930-935.
doi:
10.3724/SP.J.1123.2014.05033
-
The sample pretreatment method for the determination of four typical artificial sweeteners (ASs) including sucralose, saccharin, cyclamate, and acesulfame in soil by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was optimized. Different conditions of extraction, including four extractants (methanol, acetonitrile, acetone, deionized water), three kinds of ionic strength of sodium acetate solution (0.001, 0.01, 0.1 mol/L), four pH values (3, 4, 5 and 6) of 0.01 mol/L acetate-sodium acetate solution, four set durations of extraction (20, 40, 60, 120 min) and number of extraction times (1, 2, 3, 4 times) were compared. The optimal sample pretreatment method was finally set up. The samples were extracted twice with 25 mL 0.01 mol/L sodium acetate solution (pH 4) for 20 min per cycle. The extracts were combined and then purified and concentrated by CNW Poly-Sery PWAX cartridges with methanol containing 1 mmol/L tris(hydroxymethyl) amino methane (Tris) and 5%(v/v) ammonia hydroxide as eluent. The analytes were determined by HPLC-MS/MS. The recoveries were obtained by spiked soil with the four artificial sweeteners at 1, 10, 100 μg/kg (dry weight), separately. The average recoveries of the analytes ranged from 86.5% to 105%. The intra-day and inter-day precisions expressed as relative standard deviations (RSDs) were in the range of 2.56%-5.94% and 3.99%-6.53%, respectively. Good linearities (r2>0.995) were observed between 1-100 μg/kg (dry weight) for all the compounds. The limits of detection were 0.01-0.21 μg/kg and the limits of quantification were 0.03-0.70 μg/kg for the analytes. The four artificial sweeteners were determined in soil samples from farmland contaminated by wastewater in Tianjin. This method is rapid, reliable, and suitable for the investigation of artificial sweeteners in soil.
-
-
-
[1]
[1] Farré M L, Pérez S, Kantiani L, et al. Trends Anal Chem, 2008, 27(11): 991
-
[2]
[2] Nakata H, Shinohara R I, Nakazawa Y, et al. Mar Pollut Bull, 2012, 64: 2211
-
[3]
[3] Kim J W, Isobe T, Malarvannan G, et al. Sci Total Environ, 2012, 424: 174
-
[4]
[4] Kim J W, Ramaswamy B R, Chang K H, et al. J Chromatogr A, 2011, 1218: 3511
-
[5]
[5] Nakata H, Shinohara R, Murata S, et al. J Environ Monit, 2010, 12: 2088
-
[6]
[6] Carpinteiro I, Ramil M, Rodríguez I, et al. J Sep Sci, 2012, 35: 459
-
[7]
[7] Carpinteiro I, Abuin B, Rodríguez I, et al. Anal Bioanal Chem, 2010, 397: 829
-
[8]
[8] Montesdeoca-Esponda S, Toro-Moreno A, Sosa-Ferrera Z, et al. J Sep Sci, 2013, 36: 2168
-
[9]
[9] Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez J J. Anal Bioanal Chem, 2012, 403: 867
-
[10]
[10] Rezaee M, Assadi Y, Hosseini M R M, et al. J Chromatogr A, 2006, 1116(1/2): 1
-
[11]
[11] Zanjani M R K, Yamini Y, Shariati S, et al. Anal Chim Acta, 2007, 585: 286
- [12]
-
[13]
[13] Lana N B, Berton P, Covaci A, et al. J Chromatogr A, 2013, 1285: 15
-
[14]
[14] Zheng C, Zhao J, Bao P, et al. J Chromatogr A, 2011, 1218: 3830
-
[1]
-
-
-
[1]
Lisen Sun , Yongmei Hao , Zhen Huang , Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063
-
[2]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[3]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[4]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[5]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[6]
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
-
[7]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[8]
Hui Li , Wei Cheng , Meng Yu , Yi Li . Improving Postgraduate Cultivation in Chemistry Discipline: A Case Study of the Chemistry Program in Jilin University. University Chemistry, 2024, 39(6): 17-22. doi: 10.3866/PKU.DXHX202403047
-
[9]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[10]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[11]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[12]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[13]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[16]
Jing Du , Xi Yu , Xiaofei Ma , Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072
-
[17]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[18]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[19]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[20]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(137)
- HTML views(25)