Citation:
WANG Xiaoyan, QI Weimei, ZHAO Xian'en, LÜ Tao, WANG Xiya, ZHENG Longfang, YAN Yehao, YOU Jinmao. Determination of four phenolic endocrine disruptors in environmental water samples by high performance liquid chromatography-fluorescence detection using dispersive liquid-liquid microextraction coupled with derivatization[J]. Chinese Journal of Chromatography,
;2014, 32(6): 623-628.
doi:
10.3724/SP.J.1123.2014.02012
-
To achieve accurate, fast and sensitive detection of phenolic endocrine disruptors in small volume of environmental water samples, a method of dispersive liquid-liquid microextraction (DLLME) coupled with fluorescent derivatization was developed for the determination of bisphenol A, nonylphenol, octylphenol and 4-tert-octylphenol in environmental water samples by high performance liquid chromatography-fluorescence detection (HPLC-FLD). The DLLME and derivatization conditions were investigated, and the optimized DLLME conditions for small volume of environmental water samples (pH 4.0) at room temperature were as follows: 70 μL chloroform as extraction solvent, 400 μL acetonitrile as dispersing solvent, vortex mixing for 3 min, and then high-speed centrifugation for 2 min. Using 2-[2-(7H-dibenzo[a,g]carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEC-Cl) as precolumn derivatization reagent, the stable derivatives of the four phenolic endocrine disruptors were obtained in pH 10.5 Na2CO3-NaHCO3 buffer/acetonitrile at 50 ℃ for 3 min, and then separated within 10 min by HPLC-FLD. The limits of detection (LODs) were in the range of 0.9-1.6 ng/L, and the limits of quantification (LOQs) were in the range of 3.8-7.1 ng/L. This method had perfect linearity, precision and recovery results, and showed obvious advantages and practicality comparing to the previously reported methods. It is a convenient and validated method for the routine analysis of phenolic endocrine disruptors in waste water of paper mill, lake water, domestic wastewater, tap water, etc.
-
-
-
[1]
[1] Asimakopoulos A G, Thomaidis N S, Koupparis M A. Toxicol Lett, 2012, 210(2): 141
- [2]
-
[3]
[3] Xiao J, Shao B, Wu X Y, et al. Biomed Environ Sci, 2011, 24(1): 40
-
[4]
[4] Sun X W, Zhang Y B, Lin H, et al. Chinese Journal of Analytical Science (孙秀武, 张元标, 林辉, 等. 分析科学学报), 2013, 29(2): 149
-
[5]
[5] Liao T, Wu X C, Wang S H, et al. Chinese Journal of Analytical Chemistry (廖涛, 吴晓翠, 王少华, 等. 分析化学), 2013, 41(3): 422
-
[6]
[6] Zhang S J, You J M, Sun Z W, et al. Microchem J, 2012, 103: 90
-
[7]
[7] Rezaee M, Assadi Y, Hosseini M M, et al. J Chromatogr A, 2006, 1116: 1
- [8]
-
[9]
[9] Li Y, Liu J L, Jian Y H. Chinese Journal of Analytical Chemistry (李鱼, 刘建林, 翦英红. 分析化学), 2009, 37(10): 1484
-
[10]
[10] López-Darias J, Germán-Hernández M, Pino V, et al. Talanta, 2010, 80(5): 1611
-
[11]
[11] Huang S C, Hang Y P. Chinese Journal of Chromatography (黄少婵, 杭义萍. 色谱), 2010, 28(9): 863
- [12]
-
[13]
[13] Escrig-Doménech A, Simó-Alfonso E F, Herrero-Martínez J M, et al. J Chromatogr A, 2013, 1296: 140
-
[14]
[14] Nuhu A A, Basheer C, Saad B. J Chromatogr B, 2011, 879: 1180
-
[15]
[15] Yan T, Sun X J, Zhao H X, et al. Chinese Journal of Analytical Chemistry (闫涛, 孙学军, 赵怀鑫, 等. 分析化学), 2009, 37(6): 788
-
[16]
[16] Wang X D, Zhao X H, Zhang X B. Chinese Journal of Analysis Laboratory (王晓东, 赵新华, 张新波, 等. 分析试验室), 2006, 25(9): 27
-
[17]
[17] Li Y, Liu J L, Zhang C. Chinese Journal of Analytical Chemistry (李鱼, 刘建林, 张琛, 等. 分析化学), 2012, 40(1): 107
-
[18]
[18] Gatidou G, Thomaidis N S, Stasinakis A S, et al. J Chromatogr A, 2007, 1138: 32
-
[1]
-
-
-
[1]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[2]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[3]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[4]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[5]
Siming Bian , Sijie Luo , Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087
-
[6]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[7]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[8]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[9]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[10]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[11]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[12]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[13]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[14]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[15]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[16]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[17]
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
-
[18]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[19]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[20]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(217)
- HTML views(7)