Citation: LIANG Chao, QIAO Junqin, GE Xin, LIAN Hongzhen. Determination of n-octanol/water partition coefficients for persistent organic pollutants by reversed-phase high performance liquid chromatography with dual-point retention time correction[J]. Chinese Journal of Chromatography, ;2014, 32(4): 426-432. doi: 10.3724/SP.J.1123.2013.10034 shu

Determination of n-octanol/water partition coefficients for persistent organic pollutants by reversed-phase high performance liquid chromatography with dual-point retention time correction

  • Corresponding author: GE Xin,  LIAN Hongzhen, 
  • Received Date: 29 October 2013
    Available Online: 10 December 2013

    Fund Project: 国家重点基础研究发展计划(973计划)项目(2009CB421601,2011CB911003);国家自然科学基金项目(21275069,90913012). (973计划)项目(2009CB421601,2011CB911003);国家自然科学基金项目(21275069,90913012)

  • n-Octanol/water partition coefficients (logKow) for persistent organic pollutants (POPs) including polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and decabromodiphenylethane (DBDPE) have been determined by a modified method of reversed-phase high performance liquid chromatography (RP-HPLC). A dual-point retention time correction (DP-RTC) was used to rectify chromatographic retention time (tR) shift resulted from stationary phase aging and so on. Based on this correction, the relationship model between logKow and logkw, the logarithm of the retention factor extrapolated to pure water, was trained by a set of model compounds (a total of 37) with reliable experimental logKow as training set, including benzene homologues, PAHs and PCDD/Fs-related compounds. A linear regression equation of logKow=(1.18±0.02) logkw+(0.36±0.11) was established with correlation coefficient (R2) of 0.985, cross-validated correlation coefficient (Rcv2) of 0.983 and standard deviation (SD) of 0.16. This quantitative structure retention relationship (QSRR) model was further validated using four verification compounds, biphenyl, fluorene, PCDD 1 and PCDF 114, with reliable experimental logKow values. The RP-HPLC-determined Kow values showed good consistency with shake-flask (SFM) or slow-stirring (SSM) results, especially for highly hydrophobic compounds. Then, the logKow values for 29 POPs of wide interest were evaluated by the improved RP-HPLC method for the first time. The DP-RTC-HPLC method is recommended for the determination of the logKow values of POPs with strong hydrophobicity.
  • 加载中
    1. [1]

      [1] Palczewska A, Neagu D, Ridley M. J Cheminf, 2013, 5: 16  

    2. [2]

      [2] Pham-The H, Gonzalez-Alvarez I, Bermejo M, et al. Mol Inf, 2013, 32: 459  

    3. [3]

      [3] Yadav M, Joshi S, Nayarisseri A, et al. Interdiscip Sci Comput Life Sci, 2013, 5: 150  

    4. [4]

      [4] Sidir Y G, Sidir I. J Mol Struc, 2013, 1045: 131  

    5. [5]

      [5] Lammel G, Heil A, Stemmler I, et al. Environ Sci Technol, 2013, 47(20): 11616  

    6. [6]

      [6] Pincemaille J, Schummer C, Heinen E, et al. Food Chem, 2014, 145: 807  

    7. [7]

      [7] Wu M H, Li G, Xu G, et al. Environmental Chemistry (吴明红, 李刚, 徐刚, 等. 环境化学), 2012, 31(11): 1750

    8. [8]

      [8] Zhu B Q, Chen H, Li S Q. Chinese Journal of Chromatography (祝本琼, 陈浩, 李胜清. 色谱), 2012, 30(2): 201

    9. [9]

      [9] Esposito M, Serpe F P, Diletti G, et al. Chemosphere, 2014, 94: 62  

    10. [10]

      [10] Lambert M K, Friedman C, Luey P, et al. Environ Sci Technol, 2011, 45(10): 4331  

    11. [11]

      [11] Hu X B, Xu Z C, Peng X C, et al. Environ Geochem Health, 2013, 35: 593  

    12. [12]

      [12] Sun Y X, Xu X R, Hao Q, et al. Chemosphere, 2014, 95: 442  

    13. [13]

      [13] Salamova A, Hites R A. Environ Sci Technol, 2013, 47(1): 349  

    14. [14]

      [14] Yang Y, Chen J H, Chang L P, et al. Chinese Journal of Chromatography (杨扬, 陈建海, 常利平, 等. 色谱), 2008, 26(5): 646

    15. [15]

      [15] Organization for Economic Cooperation and Development (OECD). Guideline for Testing of Chemicals, No.107: Partition Coefficient (n-octanol/water)-Shake Flask Method, 1981

    16. [16]

      [16] Brooke D N, Dobbs A J, Williams N. Ecotoxicol Environ Safe, 1986, 11(3): 251  

    17. [17]

      [17] OECD. Guideline for Testing of Chemicals, No.117: Partition Coefficient (n-octanol/water)-High Performance Liquid Chromatography Method, 1989

    18. [18]

      [18] Braumann T. J Chromatogr, 1986, 373(2): 191

    19. [19]

      [19] Lu P Z, Lu X M, Li X Z, et al. Chinese Science Bulletin (卢佩章, 卢小明, 李秀珍, 等. 科学通报), 1982, 27(19): 1175

    20. [20]

      [20] Snyder L R, Dolan J W, Gant J R. J Chromatogr, 1979, 165(1): 3  

    21. [21]

      [21] Han S Y, Qiao J Q, Zhang Y Y, et al. Chemosphere, 2011, 83(2): 131  

    22. [22]

      [22] Hansch C, Leo A J. Substituent Constants for Correlation Analysis in Chemistry and Biology. New York: Wiley, 1979

    23. [23]

      [23] Sangster J. J Phys Chem Ref Data, 1989, 18(3): 1111  

    24. [24]

      [24] De Bruijn J, Busser F, Seinen W, et al. Environ Toxicol Chem, 1989, 8(6): 499  

    25. [25]

      [25] Watarai H, Tanaka M, Suzuki N. Anal Chem, 1982, 54(4): 702  

    26. [26]

      [26] Doucette W J, Andren A W. Chemosphere, 1988, 17(2): 345  

    27. [27]

      [27] Banerjee S, Yalkowsky S H, Valvani S C. Environ Sci Tech, 1980, 14(10): 1227  

    28. [28]

      [28] Hansch C, Fujita T. J Am Chem Soc, 1964, 86(8): 1616  

    29. [29]

      [29] Demaaged P, Hulscher D, Heuvel H, et al. Environ Toxicol Chem, 1998, 17(2): 251

    30. [30]

      [30] Helweg C, Nielsen T, Hansen P. Chemosphere, 1997, 34(8): 1673  

    31. [31]

      [31] Kenaga E E, Goring C A I//Eaton J G, et al. Aquatic Toxicology: Proceedings of the Third Annual Symposium on Aquatic Toxicology: ASTM STP 707, 1980: 78

    32. [32]

      [32] He Y B, Zhao Y H, Wang L S, et al. Environmental Chemistry (何艺兵, 赵元慧, 王连生, 等. 环境化学), 1994, 13(3): 195

    33. [33]

      [33] Valsaraj K, Thibodeaux L. Sep Sci Tech, 1990, 25(4): 369  

    34. [34]

      [34] Rapaport R A, Eisenreich S J. Environ Sci Technol, 1984, 18(3): 163  

    35. [35]

      [35] Bruggeman W, Van Der Steen J, Hutzinger O. J Chromatogr, 1982, 238(2): 335  

    36. [36]

      [36] Risby T, Hsu T-B, Sehnert S, et al. Environ Sci Technol, 1990, 24(11): 1680  

    37. [37]

      [37] Gobas F, Lahittete J, Garofalo G, et al. J Pharm Sci, 1988, 77(3): 265  

    38. [38]

      [38] Sijm D T H M, Wever H, De Vries P J, et al. Chemosphere, 1989, 19: 263  

    39. [39]

      [39] Sarna L P, Hodge P E, Webster G R B. Chemosphere, 1984, 13(9): 975  

    40. [40]

      [40] Han S Y, Liang C, Qiao J Q, et al. Anal Chim Acta, 2012, 713: 130  

    41. [41]

      [41] Lian H Z, Wang W H, Li D N. J Sep Sci, 2005, 28: 1179  

    42. [42]

      [42] Ming X, Han S Y, Qi Z C, et al. Talanta, 2009, 79(3): 752  

    43. [43]

      [43] Han S Y, Ming X, Qi Z C, et al. Anal Bioanal Chem, 2010, 398(6): 2731  

    44. [44]

      [44] Han S Y, Qiao J Q, Zhang Y Y, et al. Talanta, 2012, 97: 355  

    45. [45]

      [45] Han S Y, Liang C, Zou K, et al. Talanta, 2012, 101: 64  

    46. [46]

      [46] Qi Z C, Mei S B, Lian H Z. Science in China: Series B (戚争春, 梅少博, 练鸿振. 中国科学: B辑), 2009, 39(8): 806

    47. [47]

      [47] Qi Z C, Han S Y, Wu Z Y, et al. Cur Anal Chem, 2014, 10: 172

    48. [48]

      [48] Chen F Y, Cao X W, Han S Y, et al. J Liq Chromatogr Relat Technol, DOI: 10.1080/10826076.2013.864977

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    7. [7]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    9. [9]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    10. [10]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    12. [12]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    14. [14]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    17. [17]

      Guoqiang PengXiuyan LiMin LiZhibo SuFalu HuGuowei Zhou . Engineering efficient metal-organic frameworks for photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2026, 42(2): 100164-0. doi: 10.1016/j.actphy.2025.100164

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    20. [20]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

Metrics
  • PDF Downloads(0)
  • Abstract views(707)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return