Citation:
LIANG Chao, QIAO Junqin, GE Xin, LIAN Hongzhen. Determination of n-octanol/water partition coefficients for persistent organic pollutants by reversed-phase high performance liquid chromatography with dual-point retention time correction[J]. Chinese Journal of Chromatography,
;2014, 32(4): 426-432.
doi:
10.3724/SP.J.1123.2013.10034
-
n-Octanol/water partition coefficients (logKow) for persistent organic pollutants (POPs) including polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and decabromodiphenylethane (DBDPE) have been determined by a modified method of reversed-phase high performance liquid chromatography (RP-HPLC). A dual-point retention time correction (DP-RTC) was used to rectify chromatographic retention time (tR) shift resulted from stationary phase aging and so on. Based on this correction, the relationship model between logKow and logkw, the logarithm of the retention factor extrapolated to pure water, was trained by a set of model compounds (a total of 37) with reliable experimental logKow as training set, including benzene homologues, PAHs and PCDD/Fs-related compounds. A linear regression equation of logKow=(1.18±0.02) logkw+(0.36±0.11) was established with correlation coefficient (R2) of 0.985, cross-validated correlation coefficient (Rcv2) of 0.983 and standard deviation (SD) of 0.16. This quantitative structure retention relationship (QSRR) model was further validated using four verification compounds, biphenyl, fluorene, PCDD 1 and PCDF 114, with reliable experimental logKow values. The RP-HPLC-determined Kow values showed good consistency with shake-flask (SFM) or slow-stirring (SSM) results, especially for highly hydrophobic compounds. Then, the logKow values for 29 POPs of wide interest were evaluated by the improved RP-HPLC method for the first time. The DP-RTC-HPLC method is recommended for the determination of the logKow values of POPs with strong hydrophobicity.
-
-
- [1]
-
[2]
[2] Pham-The H, Gonzalez-Alvarez I, Bermejo M, et al. Mol Inf, 2013, 32: 459

-
[3]
[3] Yadav M, Joshi S, Nayarisseri A, et al. Interdiscip Sci Comput Life Sci, 2013, 5: 150

- [4]
-
[5]
[5] Lammel G, Heil A, Stemmler I, et al. Environ Sci Technol, 2013, 47(20): 11616

-
[6]
[6] Pincemaille J, Schummer C, Heinen E, et al. Food Chem, 2014, 145: 807

-
[7]
[7] Wu M H, Li G, Xu G, et al. Environmental Chemistry (吴明红, 李刚, 徐刚, 等. 环境化学), 2012, 31(11): 1750
-
[8]
[8] Zhu B Q, Chen H, Li S Q. Chinese Journal of Chromatography (祝本琼, 陈浩, 李胜清. 色谱), 2012, 30(2): 201
-
[9]
[9] Esposito M, Serpe F P, Diletti G, et al. Chemosphere, 2014, 94: 62

-
[10]
[10] Lambert M K, Friedman C, Luey P, et al. Environ Sci Technol, 2011, 45(10): 4331

-
[11]
[11] Hu X B, Xu Z C, Peng X C, et al. Environ Geochem Health, 2013, 35: 593

-
[12]
[12] Sun Y X, Xu X R, Hao Q, et al. Chemosphere, 2014, 95: 442

-
[13]
[13] Salamova A, Hites R A. Environ Sci Technol, 2013, 47(1): 349

- [14]
-
[15]
[15] Organization for Economic Cooperation and Development (OECD). Guideline for Testing of Chemicals, No.107: Partition Coefficient (n-octanol/water)-Shake Flask Method, 1981
-
[16]
[16] Brooke D N, Dobbs A J, Williams N. Ecotoxicol Environ Safe, 1986, 11(3): 251

-
[17]
[17] OECD. Guideline for Testing of Chemicals, No.117: Partition Coefficient (n-octanol/water)-High Performance Liquid Chromatography Method, 1989
-
[18]
[18] Braumann T. J Chromatogr, 1986, 373(2): 191
-
[19]
[19] Lu P Z, Lu X M, Li X Z, et al. Chinese Science Bulletin (卢佩章, 卢小明, 李秀珍, 等. 科学通报), 1982, 27(19): 1175
-
[20]
[20] Snyder L R, Dolan J W, Gant J R. J Chromatogr, 1979, 165(1): 3

-
[21]
[21] Han S Y, Qiao J Q, Zhang Y Y, et al. Chemosphere, 2011, 83(2): 131

-
[22]
[22] Hansch C, Leo A J. Substituent Constants for Correlation Analysis in Chemistry and Biology. New York: Wiley, 1979
- [23]
-
[24]
[24] De Bruijn J, Busser F, Seinen W, et al. Environ Toxicol Chem, 1989, 8(6): 499

-
[25]
[25] Watarai H, Tanaka M, Suzuki N. Anal Chem, 1982, 54(4): 702

-
[26]
[26] Doucette W J, Andren A W. Chemosphere, 1988, 17(2): 345

-
[27]
[27] Banerjee S, Yalkowsky S H, Valvani S C. Environ Sci Tech, 1980, 14(10): 1227

- [28]
-
[29]
[29] Demaaged P, Hulscher D, Heuvel H, et al. Environ Toxicol Chem, 1998, 17(2): 251
-
[30]
[30] Helweg C, Nielsen T, Hansen P. Chemosphere, 1997, 34(8): 1673

-
[31]
[31] Kenaga E E, Goring C A I//Eaton J G, et al. Aquatic Toxicology: Proceedings of the Third Annual Symposium on Aquatic Toxicology: ASTM STP 707, 1980: 78
-
[32]
[32] He Y B, Zhao Y H, Wang L S, et al. Environmental Chemistry (何艺兵, 赵元慧, 王连生, 等. 环境化学), 1994, 13(3): 195
-
[33]
[33] Valsaraj K, Thibodeaux L. Sep Sci Tech, 1990, 25(4): 369

-
[34]
[34] Rapaport R A, Eisenreich S J. Environ Sci Technol, 1984, 18(3): 163

-
[35]
[35] Bruggeman W, Van Der Steen J, Hutzinger O. J Chromatogr, 1982, 238(2): 335

-
[36]
[36] Risby T, Hsu T-B, Sehnert S, et al. Environ Sci Technol, 1990, 24(11): 1680

-
[37]
[37] Gobas F, Lahittete J, Garofalo G, et al. J Pharm Sci, 1988, 77(3): 265

-
[38]
[38] Sijm D T H M, Wever H, De Vries P J, et al. Chemosphere, 1989, 19: 263

-
[39]
[39] Sarna L P, Hodge P E, Webster G R B. Chemosphere, 1984, 13(9): 975

-
[40]
[40] Han S Y, Liang C, Qiao J Q, et al. Anal Chim Acta, 2012, 713: 130

- [41]
-
[42]
[42] Ming X, Han S Y, Qi Z C, et al. Talanta, 2009, 79(3): 752

-
[43]
[43] Han S Y, Ming X, Qi Z C, et al. Anal Bioanal Chem, 2010, 398(6): 2731

-
[44]
[44] Han S Y, Qiao J Q, Zhang Y Y, et al. Talanta, 2012, 97: 355

- [45]
-
[46]
[46] Qi Z C, Mei S B, Lian H Z. Science in China: Series B (戚争春, 梅少博, 练鸿振. 中国科学: B辑), 2009, 39(8): 806
-
[47]
[47] Qi Z C, Han S Y, Wu Z Y, et al. Cur Anal Chem, 2014, 10: 172
-
[48]
[48] Chen F Y, Cao X W, Han S Y, et al. J Liq Chromatogr Relat Technol, DOI: 10.1080/10826076.2013.864977
-
-
-
[1]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[2]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[3]
Yifan Xie , Liyun Yao , Ruolin Yang , Yuxing Cai , Yujie Jin , Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133
-
[4]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[5]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[6]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[7]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[8]
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
-
[9]
Shunü Peng , Huamin Li , Zhaobin Chen , Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043
-
[10]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[11]
Ping LI , Geng TAN , Xin HUANG , Fuxing SUN , Jiangtao JIA , Guangshan ZHU , Jia LIU , Jiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020
-
[12]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[13]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[14]
Qianping Li , Hua Guan , Changfeng Wan , Yonghai Song , Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070
-
[15]
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
-
[16]
Mian Wei , Chang Cheng , Bowen He , Bei Cheng , Kezhen Qi , Chuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158
-
[17]
Guoqiang Peng , Xiuyan Li , Min Li , Zhibo Su , Falu Hu , Guowei Zhou . Engineering efficient metal-organic frameworks for photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2026, 42(2): 100164-0. doi: 10.1016/j.actphy.2025.100164
-
[18]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[19]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[20]
Zhi FANG , Liang SUN , Mingze ZHENG , Wenhao SHENG , Hongliang HUANG , Chongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(707)
- HTML views(66)
Login In
DownLoad: