Citation: LIU Yang, ZHONG Hua, LIU Zhifeng, JIANG Yongbing, TAN Fei, ZENG Guangming, LAI Mingyong, HE Yibin. Purification and characterization of the biosurfactant rhamnolipid[J]. Chinese Journal of Chromatography, ;2014, 32(3): 248-255. doi: 10.3724/SP.J.1123.2013.10026 shu

Purification and characterization of the biosurfactant rhamnolipid

  • Corresponding author: ZHONG Hua,  ZENG Guangming, 
  • Received Date: 29 October 2013
    Available Online: 20 December 2013

    Fund Project: 国家自然科学基金项目(51378190,50908081,51039001,51378192,51308200). (51378190,50908081,51039001,51378192,51308200)

  • Biosurfactant rhamnolipid is a metabolic intermediate produced by microorganisms under a certain condition. There are the polar hydrophilic group and the non-polar hydrophobic group in rhamnolipid molecule which always exhibits high surface or interfacial activity. A reliable separation and purification method as well as component identification technique is essential for success of production process. The rhamnolipid was produced by aerobic fermentation using Pseudomonas aeruginosa CCTCC AB93066 in this study. It was separated from the culture by acid precipitation and purified by column chromatography until two groups of monorhamnolipid and dirhamnolipid were obtained. High performance liquid chromatography with mass spectrometry (HPLC-MS) examination showed that either the monorhamnolipid or the dirhamnolipid contained three major species. They were RhaC10C10, RhaC10C12-H2, RhaC10C12 for monorhamnolipid and Rha2C10C10, Rha2C10C12-H2, Rha2C10C12 for dirhamnolipid. The results of the study suggested that Pseudomonas aeruginosa CCTCC AB93066 is a good strain for rhamnolipid production. Acid precipitation-column chromatography technique is good for purification of rhamnolipid. Meanwhile, HPLC-MS is a reliable method for identifying components of rhamnolipid with high sensitivity and accuracy.
  • 加载中
    1. [1]

      [1] Makkar R S, Cameotra S S, Banat I M. AMB Express, 2011, 1(5): 18

    2. [2]

      [2] Liu Z F, Zeng G M, Zhong H, et al. World J Microb Biot, 2012, 28: 175  

    3. [3]

      [3] Liu X L, Zeng G M, Tang L, et al. Process Biochem, 2008, 43: 1300  

    4. [4]

      [4] Liang Y S, Yuan X Z, Zeng G M, et al. Biodegradation, 2010, 21: 615  

    5. [5]

      [5] Banat I M, Franzetti A, Gandolfi I, et al. Appl Microbiol Biot, 2010, 87: 427  

    6. [6]

      [6] Liu Z F, Zeng G M, Wang J, et al. Process Biochem, 2010, 45: 805  

    7. [7]

      [7] Chayabutra C, Wu J, Ju L K. Biotechnol Bioeng, 2001, 72 (1): 25  

    8. [8]

      [8] Sarachat T, Pornsunthorntawee O, Chavadej S, et al. Bioresource Technol, 2010, 101: 324  

    9. [9]

      [9] Wang W, Zeng G M, Huang G H, et al. Acta Scientiae Circumstantiae (王伟, 曾光明, 黄国和, 等. 环境科学学报), 2005, 25(7): 965

    10. [10]

      [10] Nitschke M, Costa S G V A O, Contiero J. Appl Microbiol Biot, 2010, 160: 2066

    11. [11]

      [11] Ma M Y, Shi Z, Liu Y S. Chinese Journal of Environmental Engineering (马满英, 施周, 刘有势. 环境工程学报), 2008, 2(1): 83

    12. [12]

      [12] Kuyukina M S, Ivshina I B, Philp J C, et al. J Microbiol Meth, 2001, 46: 149  

    13. [13]

      [13] Schenk T, Schuphan I, Schmidt B. J Chromatogr A, 1995, 693: 7  

    14. [14]

      [14] Davis D A, Lynch H C, Varley J. Enzyme Microb Tech, 2001, 28: 346  

    15. [15]

      [15] Hubert J, Plé K, Hamzaoui M, et al. C R Chimie, 2012, 15: 18  

    16. [16]

      [16] Witek-Krowiak A, Witek J, Gruszczyńska A, et al. World J Microb Biot, 2011, 27: 1961  

    17. [17]

      [17] Long X W, Meng Q, Sha R Y, et al. J Membrane Sci, 2012, 409: 105

    18. [18]

      [18] Mukherjee S, Das P, Sen R. Trends Biotechnol, 2006, 24(11): 509  

    19. [19]

      [19] Déziel E, Lépine F, Dennie D, et al. Biochim Biophys Acta, 1999, 1440: 244  

    20. [20]

      [20] Abalos A, Pinazo A, Infante M R, et al. Langmuir, 2001, 17: 1367  

    21. [21]

      [21] Singh N, Pemmaraju S C, Pruthi P A, et al. Appl Microbiol Biot, 2013, 169: 2374

    22. [22]

      [22] Choi M H, Xu J, Gutierrez M, et al. J Biotechnol, 2011, 151(1): 30  

    23. [23]

      [23] Ma H N, Hua Y J, Tu C Y, et al. Chinese Journal of Chromatography (马海宁, 华玉娟, 屠春燕, 等. 色谱), 2012, 30(3): 304

    24. [24]

      [24] Abdel-Mawgoud A M, Hausmann R, Lépine F, et al. Biosurfactants: from Genes to Applications. Berlin: Springer Verlag Heidelberg, 2011: 21

    25. [25]

      [25] Heyd M, Kohnert A, Tan T H, et al. Anal Bioanal Chem, 2008, 391: 1579  

    26. [26]

      [26] Nitschke M, Costa S G V A O, Haddad R, et al. Biotechnol Progr, 2005, 21: 1562  

    27. [27]

      [27] Mata-Sandoval J C, Karns J, Torrents A. J Chromatogr A, 1999, 864: 211  

    28. [28]

      [28] Zhong H, Zeng G M, Liu J X, et al. Appl Microbiol Biot, 2008, 79: 671  

    29. [29]

      [29] Zhong H, Zeng G M, Yuan X Z, et al. Appl Microbiol Biot, 2007, 77: 447  

    30. [30]

      [30] Fu H Y, Zeng G M, Yuan X Z, et al. Journal of Biology (傅海燕, 曾光明, 袁兴中, 等. 生物学杂志), 2003, 20(6): 1

    31. [31]

      [31] Arino S, Marchal R, Vandecasteele J P. Appl Microbiol Biot, 1996, 45: 162  

    32. [32]

      [32] Kennedy J H, Wiseman J M. Rapid Commun Mass Spectrom, 2010, 24: 1305  

    33. [33]

      [33] Noordman W H, Brusseau M L, Janssen D B. Environ Sci Technol, 2000, 34: 832  

    34. [34]

      [34] Ishigami Y, Gama Y, Nagahora H, et al. Chem Lett, 1987: 763

    35. [35]

      [35] Soberón-Chávez G, Lépine F, Déziel E. Appl Microbiol Biot, 2005, 68: 718  

  • 加载中
    1. [1]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    2. [2]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    5. [5]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    8. [8]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    9. [9]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    10. [10]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    11. [11]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    12. [12]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    15. [15]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    18. [18]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    19. [19]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    20. [20]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

Metrics
  • PDF Downloads(0)
  • Abstract views(1490)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return