Citation:
LAO Wenjian. Analysis of toxaphene and its eight congeners in sediment and fish tissue by gas chromatography-negative ion mass spectrometry[J]. Chinese Journal of Chromatography,
;2013, 31(7): 667-673.
doi:
10.3724/SP.J.1123.2013.06030
-
Toxaphene quantification incorporating gas chromatography/negative chemical ionization mass spectrometry (GC/NCI-MS) offers improved sensitivity and specificity. The U.S. Environmental Protection Agency (USEPA) recently released a GC/NCI-MS method (Method 8276) for the measurement of technical toxaphene and eight specific congeners (Hx-Sed, Hp-Sed, P26, P41, P40, P44, P50 and P62). However, there is still lack of a practical and complete analytical method including sample extraction, clean up, instrumental analysis, and data analysis. The goal of this work was to develop a ready-to-use method for the quantification of total toxaphene and the eight congeners. Sediment and salmon fish tissue were selected as sample matrices and extracted with methylene chloride using an accelerated solvent extraction system. The sample extracts were cleaned up with active copper powder or gel permeation chromatography, and finally silica/alumina combination column. Separation was performed on a DB-XLB column. GC/NCI-MS was operated under selected ion monitoring mode with an identical set of confirmation and quantitation ions for total toxaphene and the eight congeners. Oxygen reaction of polychlorinated biphenyls (PCB) was monitored by PCB204, an internal calibration standard, and the reaction level was kept below 1%. Average relative response factors were used in quantitation. Quantitation of total toxaphene employed the sum of all detectable (S/N ≥ 3) 6-Cl to 10-Cl homolog peak areas, while the individual congeners were quantified followed the standard procedures for single analytes. Multi-point calibration solutions ranged from 0.5 (5 for P62) to 500 μ g/L for the individual congeners, and 50 to 500 μ g/L for technical toxaphene, with the lowest calibration levels as lower limits of quantitation. Average congener recovery was (90.8±17.4)% (n=10) in spiked sediment with relative standard deviations of 5.4%-12.8% (n=10), underscoring an excellently accurate and precise method. The method was applied to analyze sediment and fish tissue samples.
-
-
-
[1]
[1] Voldner E C, Li Y F, Chemosphere, 1993, 27(10): 2073
-
[2]
[2] de Geus H J, Besselink H, Brouwer A, et al. Environ Health Perspect, 1999, 107: 115
-
[3]
[3] Wong F, Alegria H A, Bidleman T F. Environ Pollut, 2010, 158(3): 749
-
[4]
[4] Kucklick J R, Helm P A. Anal Bioanal Chem, 2006, 386(4): 819
-
[5]
[5] Korytar P, van Stee L L P, Leonards P E G, et al. J Chromatogr A, 2003, 994(1/2): 179
- [6]
-
[7]
[7] Maruya K A, Francendese L, Manning R O. Estuaries, 2005, 28(5): 786
-
[8]
[8] Krock B, Vetter W, Luckas B. Chemosphere, 1997, 35(7): 1519
-
[9]
[9] Maruya K A, Walters T L, Manning R O. Estuaries, 2001, 24(4): 585
- [10]
-
[11]
[11] Bordajandi L R, Ramos J J, Sanz J, et al. J Chromatogr A, 2008, 1186(1/2): 312
-
[12]
[12] de Geus H J, Baycan-Keller R, Oehme M, et al. J High Resolut Chromatogr, 1998, 21(1): 39
-
[13]
[13] Zhang B, Zheng M H, Liu G R, et al. Chinese Journal of Analytical Chemistry (张兵, 郑明辉, 刘国瑞, 等. 分析化学), 2012, 40(8): 1213http://wuxizazhi.cnki.net/Magazine/FXHX201208.html
-
[14]
[14] Swackhamer D L, Charles M J, Hites R A. Anal Chem, 1987, 59(6): 913
-
[15]
[15] Xia X Y, Crimmins B S, Hopke P K, et al. Anal Bioanal Chem, 2009, 395(2): 457
-
[16]
[16] Skopp S, Oehme M, Chu F L, et al. Environ Sci Technol, 2002, 36(12): 2729
-
[17]
[17] Gouteux B, Lebeuf M, Trottier S, et al. Chemosphere, 2002, 49(2): 183
- [18]
-
[19]
[19] Veyrand B, Venisseau A, Marchand P, et al. J Chromatogr B, 2008, 865(1/2): 121
- [20]
-
[21]
[21] Santos F J, Galceran M T, Caixach J, et al. Rapid Commun Mass Spectrom, 1997, 11(4): 341
-
[22]
[22] Lao W J, Tsukada D, Maruya K A. J Chromatogr A, 2012, 1270: 262
-
[23]
[23] SN 0502-95
-
[24]
[24] YC/T 180-2004
-
[25]
[25] Wang M T, Liu Z Y, Mu J, et al. Dyeing and Finishing (王明泰, 刘志研, 牟峻, 等. 印染), 2006(6): 37http://www.redlib.cn/qikan/4919/200606.htm
-
[26]
[26] Xie Y L, Rao Z, Wang X H, et al. Journal of Instrumental Analysis (谢原利, 饶竹, 王晓华, 等. 分析测试学报), 2009, 28(7): 804http://wuxizazhi.cnki.net/Search/TEST200907009.html
- [27]
- [28]
-
[29]
[29] Xie Y L, Rao Z, Wang M, et al. Rock and Mineral Analysis (谢原利, 饶竹, 王沫, 等. 岩矿测试), 2008, 27(5): 363http://wuxizazhi.cnki.net/Search/YKCS200805011.html
-
[30]
[30] Liu J S, Liu H Y, Zhang H, et al. Chinese Journal of Environmental Science and Technology (刘婕丝, 刘红玉, 张慧, 等. 环境科学与技术), 2007, 30(10): 90http://www.cnki.com.cn/Article/CJFDTotal-YZZK200601007.htm
-
[31]
[31] Carlin F J, Revells H L, Reed D L. Chemosphere, 2000, 41(4): 481
-
[32]
[32] USEPA. Method 8276-2012. [2013-06-10]. http://www.epa.gov/osw/hazard/testmethods/pdfs/8276.pdf
-
[33]
[33] Meng X Z, Blasius M E, Gossett R W, et al. Environ Pollut, 2009, 157: 2731
-
[34]
[34] Lao W, Tsukada D, Greensteint D J, et al. Environ Toxicol Chem, 2010, 29(4): 843
-
[35]
[35] Maruya K A, Wakeham S G, Vetter W, et al. Environ Toxicol Chem, 2000, 19(9): 2198
-
[36]
[36] Li Y F. J Geophys Res-Atmosphere, 2001, 106(D16): 17919
-
[1]
-
-
-
[1]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[2]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[3]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[4]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[5]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[6]
.
南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积
. CCS Chemistry, 2025, 7(0): -. -
[7]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[8]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[9]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[10]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[11]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[12]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[13]
Yonghui Wang , Weilin Chen , Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102
-
[14]
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
-
[15]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[16]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[17]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[18]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[19]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[20]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(260)
- HTML views(4)