Citation: LAO Wenjian. Analysis of toxaphene and its eight congeners in sediment and fish tissue by gas chromatography-negative ion mass spectrometry[J]. Chinese Journal of Chromatography, ;2013, 31(7): 667-673. doi: 10.3724/SP.J.1123.2013.06030 shu

Analysis of toxaphene and its eight congeners in sediment and fish tissue by gas chromatography-negative ion mass spectrometry

  • Corresponding author: LAO Wenjian, 
  • Received Date: 17 June 2013

  • Toxaphene quantification incorporating gas chromatography/negative chemical ionization mass spectrometry (GC/NCI-MS) offers improved sensitivity and specificity. The U.S. Environmental Protection Agency (USEPA) recently released a GC/NCI-MS method (Method 8276) for the measurement of technical toxaphene and eight specific congeners (Hx-Sed, Hp-Sed, P26, P41, P40, P44, P50 and P62). However, there is still lack of a practical and complete analytical method including sample extraction, clean up, instrumental analysis, and data analysis. The goal of this work was to develop a ready-to-use method for the quantification of total toxaphene and the eight congeners. Sediment and salmon fish tissue were selected as sample matrices and extracted with methylene chloride using an accelerated solvent extraction system. The sample extracts were cleaned up with active copper powder or gel permeation chromatography, and finally silica/alumina combination column. Separation was performed on a DB-XLB column. GC/NCI-MS was operated under selected ion monitoring mode with an identical set of confirmation and quantitation ions for total toxaphene and the eight congeners. Oxygen reaction of polychlorinated biphenyls (PCB) was monitored by PCB204, an internal calibration standard, and the reaction level was kept below 1%. Average relative response factors were used in quantitation. Quantitation of total toxaphene employed the sum of all detectable (S/N ≥ 3) 6-Cl to 10-Cl homolog peak areas, while the individual congeners were quantified followed the standard procedures for single analytes. Multi-point calibration solutions ranged from 0.5 (5 for P62) to 500 μ g/L for the individual congeners, and 50 to 500 μ g/L for technical toxaphene, with the lowest calibration levels as lower limits of quantitation. Average congener recovery was (90.8±17.4)% (n=10) in spiked sediment with relative standard deviations of 5.4%-12.8% (n=10), underscoring an excellently accurate and precise method. The method was applied to analyze sediment and fish tissue samples.
  • 加载中
    1. [1]

      [1] Voldner E C, Li Y F, Chemosphere, 1993, 27(10): 2073

    2. [2]

      [2] de Geus H J, Besselink H, Brouwer A, et al. Environ Health Perspect, 1999, 107: 115

    3. [3]

      [3] Wong F, Alegria H A, Bidleman T F. Environ Pollut, 2010, 158(3): 749  

    4. [4]

      [4] Kucklick J R, Helm P A. Anal Bioanal Chem, 2006, 386(4): 819  

    5. [5]

      [5] Korytar P, van Stee L L P, Leonards P E G, et al. J Chromatogr A, 2003, 994(1/2): 179

    6. [6]

      [6] Vetter W. Chemosphere, 1993, 26(6): 1079  

    7. [7]

      [7] Maruya K A, Francendese L, Manning R O. Estuaries, 2005, 28(5): 786  

    8. [8]

      [8] Krock B, Vetter W, Luckas B. Chemosphere, 1997, 35(7): 1519  

    9. [9]

      [9] Maruya K A, Walters T L, Manning R O. Estuaries, 2001, 24(4): 585  

    10. [10]

      [10] Smalling K L, Maruya K A. J Sep Sci, 2001, 24(2): 104  

    11. [11]

      [11] Bordajandi L R, Ramos J J, Sanz J, et al. J Chromatogr A, 2008, 1186(1/2): 312

    12. [12]

      [12] de Geus H J, Baycan-Keller R, Oehme M, et al. J High Resolut Chromatogr, 1998, 21(1): 39  

    13. [13]

      [13] Zhang B, Zheng M H, Liu G R, et al. Chinese Journal of Analytical Chemistry (张兵, 郑明辉, 刘国瑞, 等. 分析化学), 2012, 40(8): 1213http://wuxizazhi.cnki.net/Magazine/FXHX201208.html

    14. [14]

      [14] Swackhamer D L, Charles M J, Hites R A. Anal Chem, 1987, 59(6): 913  

    15. [15]

      [15] Xia X Y, Crimmins B S, Hopke P K, et al. Anal Bioanal Chem, 2009, 395(2): 457  

    16. [16]

      [16] Skopp S, Oehme M, Chu F L, et al. Environ Sci Technol, 2002, 36(12): 2729  

    17. [17]

      [17] Gouteux B, Lebeuf M, Trottier S, et al. Chemosphere, 2002, 49(2): 183  

    18. [18]

      [18] Chan H M, Yeboah F. Chemosphere, 2000, 41(4): 507  

    19. [19]

      [19] Veyrand B, Venisseau A, Marchand P, et al. J Chromatogr B, 2008, 865(1/2): 121

    20. [20]

      [20] Fowler B. Chemosphere, 2000, 41(4): 487  

    21. [21]

      [21] Santos F J, Galceran M T, Caixach J, et al. Rapid Commun Mass Spectrom, 1997, 11(4): 341  

    22. [22]

      [22] Lao W J, Tsukada D, Maruya K A. J Chromatogr A, 2012, 1270: 262  

    23. [23]

      [23] SN 0502-95

    24. [24]

      [24] YC/T 180-2004

    25. [25]

      [25] Wang M T, Liu Z Y, Mu J, et al. Dyeing and Finishing (王明泰, 刘志研, 牟峻, 等. 印染), 2006(6): 37http://www.redlib.cn/qikan/4919/200606.htm

    26. [26]

      [26] Xie Y L, Rao Z, Wang X H, et al. Journal of Instrumental Analysis (谢原利, 饶竹, 王晓华, 等. 分析测试学报), 2009, 28(7): 804http://wuxizazhi.cnki.net/Search/TEST200907009.html

    27. [27]

      [27] Zhang B, Wu J J, Liu G R, et al. Chinese Journal of Chromatography (张兵, 吴嘉嘉, 刘国瑞, 等. 色谱), 2010, 28(5): 456

    28. [28]

      [28] Tian S Q, Mao X H, Miao S, et al. Chinese Journal of Chromatography (田绍琼, 毛秀红, 苗水, 等. 色谱), 2012, 30(1): 14

    29. [29]

      [29] Xie Y L, Rao Z, Wang M, et al. Rock and Mineral Analysis (谢原利, 饶竹, 王沫, 等. 岩矿测试), 2008, 27(5): 363http://wuxizazhi.cnki.net/Search/YKCS200805011.html

    30. [30]

      [30] Liu J S, Liu H Y, Zhang H, et al. Chinese Journal of Environmental Science and Technology (刘婕丝, 刘红玉, 张慧, 等. 环境科学与技术), 2007, 30(10): 90http://www.cnki.com.cn/Article/CJFDTotal-YZZK200601007.htm

    31. [31]

      [31] Carlin F J, Revells H L, Reed D L. Chemosphere, 2000, 41(4): 481  

    32. [32]

      [32] USEPA. Method 8276-2012. [2013-06-10]. http://www.epa.gov/osw/hazard/testmethods/pdfs/8276.pdf

    33. [33]

      [33] Meng X Z, Blasius M E, Gossett R W, et al. Environ Pollut, 2009, 157: 2731  

    34. [34]

      [34] Lao W, Tsukada D, Greensteint D J, et al. Environ Toxicol Chem, 2010, 29(4): 843  

    35. [35]

      [35] Maruya K A, Wakeham S G, Vetter W, et al. Environ Toxicol Chem, 2000, 19(9): 2198  

    36. [36]

      [36] Li Y F. J Geophys Res-Atmosphere, 2001, 106(D16): 17919

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    14. [14]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(0)
  • Abstract views(260)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return