Citation: WEI Liming, LU Haojie, YANG Pengyuan, WU Xin. Development of sample pretreatment approach and technology for peptidome[J]. Chinese Journal of Chromatography, ;2013, 31(7): 603-612. doi: 10.3724/SP.J.1123.2013.05030 shu

Development of sample pretreatment approach and technology for peptidome

  • Corresponding author: WU Xin, 
  • Received Date: 20 May 2013

    Fund Project: 国家杰出青年科学基金项目(21025519). (21025519)

  • As a branch of proteomics, peptidome has been extensively applied in biomarker discovery, early diagnosis and pharmacy. In the research of peptidome, sample pretreatment plays a vital role. Here, we review the pretreatment approaches and techniques of peptidome, mainly including ultrafiltration, organic solvent precipitation, solid phase extraction and so on. The biggest challenge of the development of peptidome is the large number of high-abundance proteins in the sample. Therefore, there is an urgent need to develop the fast, efficient, high-throughput and automated sample preparation methods and techniques.
  • 加载中
    1. [1]

      [1] Robinson W H, Steinman L. Nat Biotech, 2011, 29(6): 500  

    2. [2]

      [2] Hölttä M, Zetterberg H, Mirgorodskaya E, et al. PLoS ONE, 2012, 7(8): e42555

    3. [3]

      [3] Larman H B, Zhao Z, Laserson U, et al. Nat Biotech, 2011, 29(6): 535  

    4. [4]

      [4] Gelman J S, Sironi J, Castro L M, et al. J Proteome Res, 2011, 10(4): 1583  

    5. [5]

      [5] Soloviev M, Finch P. Proteomics, 2006, 6(3): 744  

    6. [6]

      [6] Villanueva J, Shaffer D R, Philip J, et al. J Clin Inverst, 2006, 116(1): 271http://www.ncbi.nlm.nih.gov/pubmed/16395409#

    7. [7]

      [7] Chertov O, Simpson J T, Biragyn A, et al. Expert Rev Proteomics, 2005, 2(1): 139  

    8. [8]

      [8] Hu L, Ye M, Zou H. Expert Rev Proteomics, 2009, 6(4): 433  

    9. [9]

      [9] West-Norager M, Kelstrup C D, Schou C, et al. J Chromatogr B, 2007, 847(1): 30  

    10. [10]

      [10] Hsieh S Y, Chen R Y, Pan Y H, et al. Proteomics, 2006, 6(10): 3189  

    11. [11]

      [11] Di Girolamo F, Alessandroni J, Somma P, et al. J Proteomics, 2010, 73(3): 667  

    12. [12]

      [12] Banks R E, Stanley A J, Cairns D A, et al. Clin Chem, 2005, 51(9): 1637  

    13. [13]

      [13] Zimmerman L J, Li M, Yarbrough W G, et al. Mol Cell Proteomics, 2012, 11(6): 1http://www.keepthefaith1296.com/parkinsons/interlaboratory-study-characterizing-a-yeast-performance-standard-for-benchmarking-lc-ms-platform-performance-MTk4NTg0OTk=.htm

    14. [14]

      [14] de Jong E P, van Riper S K, Koopmeiners J S, et al. Clin Chim Acta, 2011, 412(23/24): 2284http://www.keepthefaith1296.com/parkinsons/development-and-evaluation-of-normalization-methods-for-label-free-relative-quantification-of-endogenous-peptides-MTk1OTY2OTU=.htm

    15. [15]

      [15] Scholz B, Sköld K, Kultima K, et al. Mol Cell Proteomics, 2011, 10(3): 1http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517140/

    16. [16]

      [16] Zhou M, Lucas D A, Chan K C, et al. Electrophoresis, 2004, 25(9): 1289  

    17. [17]

      [17] Tirumalai R S, Chan K C, Prieto D A, et al. Mol Cell Proteomics, 2003, 2(10): 1096  

    18. [18]

      [18] Kawashima Y, Fukutomi T, Tomonaga T, et al. J Proteome Res, 2010, 9(4): 1694  

    19. [19]

      [19] Vitorino R, Guedes S, Manadas B, et al. J Proteomics, 2012, 75(17): 5140  

    20. [20]

      [20] Good D M, Zürbig P, Argilés A, et al. Mol Cell Proteomics, 2010, 9(11): 2424  

    21. [21]

      [21] Ziganshin R, Arapidi G, Azarkin I, et al. J Proteomics, 2011, 74(5): 595  

    22. [22]

      [22] Fan N J, Gao C F, Wang X L, et al. J Biomed Biotech. DOI: 10.1155/2012/985020

    23. [23]

      [23] Sköld K, Svensson M, Norrman M, et al. Proteomics, 2007, 7(24): 4445  

    24. [24]

      [24] Bora A, Annangudi S P, Millet L J, et al. J Proteome Res, 2008, 7(11): 4992  

    25. [25]

      [25] Sturm R M, Greer T, Woodards N, et al. J Proteome Res, 2013, 12(2): 743  

    26. [26]

      [26] Svensson M, Sköld K, Svenningsson P, et al. J Proteome Res, 2003, 2(2): 213  

    27. [27]

      [27] Sköld K, Svensson M, Kaplan A, et al. Proteomics, 2002, 2(4): 447  

    28. [28]

      [28] Che F Y, Zhang X, Berezniuk I, et al. J Proteome Res, 2007, 6(12): 4667  

    29. [29]

      [29] Romanova E V, Rubakhin S S, Sweedler J V. Anal Chem, 2008, 80(9): 3379  

    30. [30]

      [30] Harper R G, Workman S R, Schuetzner S, et al. Electrophoresis, 2004, 25(9): 1299  

    31. [31]

      [31] Zheng X, Baker H, Hancock W S. J Chromatogr A, 2006, 1120(1/2): 173http://www.northeastern.edu/barnett/faculty/bios/hancock.html

    32. [32]

      [32] Greening D W, Simpon R J. J Proteomics, 2010, 73(3): 637  

    33. [33]

      [33] Zougman A, Pilch B, Podtelejnikov A, et al. J Proteome Res, 2008, 7(1): 386  

    34. [34]

      [34] Yin P, Knolhoff A M, Rosenberg H J, et al. J Proteome Res, 2012, 11(8): 3965  

    35. [35]

      [35] Lee J E, Atkins N Jr, Hatcher N G, et al. Mol Cell Proteomics, 2010, 9(2): 285  

    36. [36]

      [36] Alpert A J, Shukla A K. J Biomol Techniques, 2003, 14: 55

    37. [37]

      [37] Kay R, Barton C, Ratcliffe L, et al. Rapid Commun Mass Spectrom, 2008, 22(20): 3255  

    38. [38]

      [38] Tucholska M, Scozzaro S, Williams D, et al. Anal Biochem, 2007, 370(2): 228  

    39. [39]

      [39] Polson C, Sarkar P, Incledon B, et al. J Chromatogr B, 2003, 785(2): 263  

    40. [40]

      [40] Chertov O, Biragyn A, Kwak L W, et al. Proteomics, 2004, 4(4): 1195  

    41. [41]

      [41] Hayakawa E, Landuyt B, Baggerman G, et al. Peptides, 2013, 42: 63  

    42. [42]

      [42] Zhao L S, Li Q, Yang W, et al. Chinese Journal of Chromatography (赵龙山, 李清, 杨威, 等. 色谱), 2012, 30(7): 705

    43. [43]

      [43] Kawashima Y, Fukutomi T, Tomonaga T, et al. J Proteome Res, 2010, 9(4): 1694  

    44. [44]

      [44] Vitorino R, Barros A S, Caseiro A, et al. Talanta, 2012, 94: 209  

    45. [45]

      [45] Potier D N, Griffiths J R, Unwin R D, et al. Anal Chem, 2012, 84(13): 5604  

    46. [46]

      [46] Engwegen J Y M N, Gast M C W, Schellens J H M, et al. Trends Pharmacol Sci, 2006, 27(5): 251  

    47. [47]

      [47] Drake R R, Cazares L H, Semmes O J, et al. Expert Rev Mol Diagn, 2005, 5(1): 93  

    48. [48]

      [48] Zhang Z, Bast R C Jr, Yu Y, et al. Cancer Res, 2004, 64(16): 5882  

    49. [49]

      [49] Peng J, Stanley A J, Cairns D, et al. Proteomics, 2009, 9(2): 492  

    50. [50]

      [50] Winder A W J, Gast M C W, Beijnen J H, et al. BMC Medical Genomics, 2009, 2: 4  

    51. [51]

      [51] Villanueva J, Philip J, Entenberg D, et al. Anal Chem, 2004, 76(6): 1560  

    52. [52]

      [52] Tiss A, Smith C, Camuzeaux S, et al. Proteomics, 2007, 7(1): 77

    53. [53]

      [53] Baumann S, Ceglarek U, Fiedler G M, et al. Clin Chem, 2005, 51(6): 973  

    54. [54]

      [54] Fiedler G M, Baumann S, Leichtle A, et al. Clin Chem, 2007, 53(3): 421  

    55. [55]

      [55] Gatlin C L, White K Y, Tracy M B, et al. J Mass Spectrom, 2011, 46(1): 85  

    56. [56]

      [56] Chen H, Deng C, Li Y, et al. Adv Mater, 2009, 21(21): 2200  

    57. [57]

      [57] Chen H, Qi D, Deng C, et al. Proteomics, 2009, 9(2): 380  

    58. [58]

      [58] Chen H, Liu S, Li Y, et al. Proteomics, 2011, 11(5): 890  

    59. [59]

      [59] Wu C X, Wang C, Wang Z. Chinese Journal of Chromatography (武春霞, 王春, 王志. 色谱), 2011, 29(1): 6

    60. [60]

      [60] Li X, Xu S, Pan C, et al. J Sep Sci, 2007, 30(6): 930  

    61. [61]

      [61] Vallant R M, Szabo Z, Trojer L, et al. J Proteome Res, 2007, 6(1): 44  

    62. [62]

      [62] Wei L, Shen Q, Lu H, et al. J Chromatogr B, 2009, 877(29): 3631  

    63. [63]

      [63] Yin P, Zhao M, Deng C. Nanoscale, 2012, 4(22): 6948  

    64. [64]

      [64] Tian R, Zhang H, Ye M, et al. Angew Chem Int Ed, 2007, 46(6): 962  

    65. [65]

      [65] Tian R, Ye M, Hu L, et al. J Sep Sci, 2007, 30(14): 2204  

    66. [66]

      [66] Qin H, Gao P, Wang F, et al. Angew Chem Int Ed, 2011, 50(51): 12218  

    67. [67]

      [67] Terracciano R, Preianò M, Palladino G P, et al. Proteomics, 2011, 11(16): 3402  

    68. [68]

      [68] Qian K, Gu W, Yuan P, et al. Small, 2012, 8(2): 231  

    69. [69]

      [69] Preianò M, Pasqua L, Gallelli L, et al. Proteomics, 2012, 12(22): 3286  

    70. [70]

      [70] Yin P, Wang Y, Li Y, et al. Proteomics, 2012, 12(18): 2784  

    71. [71]

      [71] Chen H, Liu S, Yang H, et al. Proteomics, 2010, 10(5): 930

    72. [72]

      [72] Liu S, Chen H, Lu X, et al. Angew Chem, 2010, 122(41): 7719  

    73. [73]

      [73] Wan J, Qian K, Zhang J, et al. Langmuir, 2010, 26(10): 7444  

    74. [74]

      [74] Zhu G T, Li X S, Fu X M, et al. Chem Commun, 2012, 48(80): 9980  

    75. [75]

      [75] Hu Y, Bouamrani A, Tasciotti E, et al. ACS Nano, 2010, 4(1): 439  

    76. [76]

      [76] Tan J, Zhao W J, Yu J K, et al. Adv Healthcare Mater, 2012, 1: 742  

    77. [77]

      [77] Sudhir P R, Wu H F, Zhou Z C. Anal Chem, 2005, 77(22): 7380  

    78. [78]

      [78] Gu Z Y, Chen Y J, Jiang J Q, et al. Chem Commun, 2011, 47(16): 4787  

    79. [79]

      [79] Rodthongkum N, Chen Y, Thayumanavan S, et al. Anal Chem, 2010, 82(20): 8686  

    80. [80]

      [80] Wu X Y, Wang R, Xie H, et al. Chinese Journal of Chromatography (武晓玉, 王荣, 谢华, 等. 色谱), 2012, 30(8): 810

    81. [81]

      [81] Wagner K, Miliotis T, Marko-Varga G, et al. Anal Chem, 2002, 74(4): 809  

    82. [82]

      [82] Hu L, Boos K S, Ye M, et al. J Chromatogr A, 2009, 1216: 5377  

    83. [83]

      [83] Luchini A, Geho D H, Bishop B, et al. Nano Lett, 2008, 8(1): 350  

    84. [84]

      [84] Longo C, Patanarut A, George T, et al. PLoS ONE, 2004, 4(3): e4763

    85. [85]

      [85] Fedolini C, Meani F, Reeder K A, et al. Nano Res, 2008, 1(16): 502

    86. [86]

      [86] Rainczuk A, Meehan K, Steer D L, et al. Proteomics, 2010, 10(2): 332  

    87. [87]

      [87] Tamburro D, Fredolini C, Espina V, et al. J Am Chem Soc, 2011, 133(47): 19178  

    88. [88]

      [88] Tian R, Ren L, Ma H, et al. J Chromatogr A, 2009, 1216: 1270  

    89. [89]

      [89] Hu L, Zhou H, Li Y, et al. Anal Chem, 2009, 81(1): 94  

    90. [90]

      [90] Zhu J, Wang F, Cheng K, et al. J Proteomics, 2013, 78: 389  

    91. [91]

      [91] Liu L, Zhang Y, Zhang L, et al. Anal Chim Acta, 2012, 753: 64  

    92. [92]

      [92] Hu L, Li X, Jiang X, et al. J Proteome Res, 2007, 6(2): 801  

    93. [93]

      [93] Shen Y, Liu T, Tolić N, et al. J Proteome Res, 2010, 9(5): 2339  

    94. [94]

      [94] Ly L, Wasinger V C. Proteomics, 2008, 8(20): 4197  

    95. [95]

      [95] Kamphorst J J, Tjaden U R, Heijden R, et al. Electrophoresis, 2009, 30(13): 2284  

    96. [96]

      [96] Tanaka K, Tsugawa N, Kim Y O, et al. Biochem Biophys Res Commun, 2009, 379(1): 110  

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    6. [6]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    7. [7]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    8. [8]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    9. [9]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    10. [10]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    11. [11]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    12. [12]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    13. [13]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    14. [14]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    15. [15]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    16. [16]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    18. [18]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    19. [19]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    20. [20]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

Metrics
  • PDF Downloads(0)
  • Abstract views(728)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return